
Deep Learning – Music Generation – 2019Jean-Pierre Briot

Jean-Pierre Briot

Jean-Pierre.Briot@lip6.fr

LIP6
Sorbonne Université – CNRS

Programa de Pós-Graduação em Informática (PPGI)
UNIRIO

Progress and Challenges for Music Generation
By Deep Neural Networks (Deep Learning)

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Why/Outline

2

• Music Generation
• Recent boom using Deep Learning Techniques
• Very active domain

– Ex: Google Magenta Project

• What is New?
– From Initial Neural Networks

• Generative Architectures
– Variational Autoencoders (VAE)
– Generative Adversarial Networks (GAN)

• Issues
– Interaction, Control, Creativity, Structure

• Prospects

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Outline

• Deep Learning Music Generation Recent Achievements
• Neural Networks
• A First Example of Music Generation
• Pioneering Work of Neural Network-based Music Generation

(1988)
• From Neural Networks to Deep Learning
• Deep Learning Progress and Architectures
• Variational Autoencoders (VAE)
• Generative Adversarial Networks (GAN)
• Autonomous Generation vs Creation Support
• Issues/Challenges
• Control
• Conclusion

3

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Recent Creations

4

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Doodle Bach Chorales

5
https://www.google.com/doodles/celebrating-johann-sebastian-bach

https://www.google.com/doodles/celebrating-johann-sebastian-bach

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Electro Dance-Pop Music

• YDCHT (Young Americans Challenging High Technology)

• Chain Tripping Album, 30 August 2019

• Composed with Magenta MusicVAE [Roberts et al., 2018]

I’m so in love

I can feel it in my car

I can feel it in my heart,

I can feel it so hard

I want your phone to my brain

I want you to call my name

I want you to do it too

Oh, won’t you come, won’t you come

Won’t you work on my head

Be my number nine

Loud Light(Downtown) Dancing

Deep Learning – Music Generation – 2019Jean-Pierre Briot

YDCHT + Magenta – Chain Tripping Album

• Melody/Chords/Rhythm Loops
– MusicVAE (VRAE)
– Training Corpus: Previous music by YDCHT

• Lyrics
– LSTM
– Training Corpus: YDCHT + Liked Lyrics

• Sounds
– Nsynth (Signal VAE)

• Images and Videos
– GAN

https://arstechnica.com/gaming/2019/08/yachts-chain-tripping-is-a-new-landmark-for-ai-
music-an-album-that-doesnt-suck/

https://arstechnica.com/gaming/2019/08/yachts-chain-tripping-is-a-new-landmark-for-ai-music-an-album-that-doesnt-suck/

Deep Learning – Music Generation – 2019Jean-Pierre Briot

YDCHT + Magenta – Chain Tripping Album

• Rules:
– Every new song interpolated from existing YDCHT

melodies
– 4 measures-long loops
– Cannot add any note, harmony
– Only substractive or transpositional changes
– Structure and collage allowed
– Assignment (to vocal, bass line…)

• Human Production and Arrangements

https://www.youtube.com/watch?time_continue=1378&v=pM9u9xcM_cs&feature=emb_logo

https://www.youtube.com/watch?time_continue=1378&v=pM9u9xcM_cs&feature=emb_logo

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Painting

• 26 October 2018, Christie’s Auction, New York, US$ 432 500
• Edmond de Belamy, Obvious (Collective)
• Created with Deep Learning (GAN)
• Trained with 15 000 paintings (XIV – XX centuries)

9

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Hello World

10

• January 2018, Hello World

• Created by Musicians (Musical Direction: Skygge – aka Benoît Carré)
• with FlowComposer [Pachet et al., 2014]
• ERC Project Flow Machines [Pachet et al., 2012-2017]
• Various Techniques (Markov Constraints, Rules, …)

https://www.youtube.com/watch?v=iuWYQe3aGlg

https://www.youtube.com/watch?v=iuWYQe3aGlg

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Hello World

11

• January 2018, Hello World, Flow Records
• Making Off

https://www.youtube.com/watch?v=yxTF-UFvoHU

https://www.youtube.com/watch?v=yxTF-UFvoHU

Deep Learning – Music Generation – 2019Jean-Pierre Briot

"Beyond the Fence" Musical

• PropperWryter

• The Cloul Lyricist

• Folk-RNN

• Flow Machines

• Arts Theater, London, February-March 2016

https://www.youtube.com/watch?time_continue=75&v=VZzI4sfCFjc
https://www.youtube.com/watch?v=IzeSDloI-7I

12

https://www.youtube.com/watch?time_continue=75&v=VZzI4sfCFjc
https://www.youtube.com/watch?v=IzeSDloI-7I

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Deep Learning

13

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Deep Learning

14

• Boom Since 2012 (Imagenet Breakthrough)

• Image Recognition
• Weather Prediction
• Translation

• Speech Recognition
• Speech Synthesis
• Source Separation

• Music Creation
• Image Creation

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.

1

ar
X

iv
:1

60
9.

03
49

9v
2

 [
cs

.S
D

]
 1

9
Se

p
20

16

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Deep Reinforcement Learning [Silver et al., 2013]

• Deep Learning improves Other Machine Learning Paradigm Implementation:
– Reinforcement Learning

• Deep Reinforcement Learning
– Efficient Estimation of Gain (Q-Learning Q-Table)
– Massive Simulation/Evaluation (Massive Processing)
– Replay Mechanism (Massive Memory)

• First Application: Atari Games

• Second Application: Go
– Alpha Go, AlphaZero Go

15

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Speech/Music Separation

• Long Time Very Hard Problem, Now Resolved
• Cocktail Effect Voice Separation

• Music/Voice Separation

16

https://www.youtube.com/watch?v=vW51cG1Ox98

https://www.youtube.com/watch?time_continue=2&v=Cx7Me0Ayz1I

https://www.youtube.com/watch?v=vW51cG1Ox98
https://www.youtube.com/watch?time_continue=2&v=Cx7Me0Ayz1I

Deep Learning – Music Generation – 2019Jean-Pierre Briot

From Neural Networks to Deep Learning

17

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Deep Learning

18

• Overwhelming Success

• Simple Basic Receipt

– Linear/Logistic Regression

– Loss Function Minimization

• Technical Improvements (since First Neural Networks)

– Backpropagation, LSTM, Batch Normalization…

– Loss Function Wide Application

» Meta-Level, ex: LSTM

» Constraints, ex: VAE

– Optimized Implementations/Platforms

• Scale+

– CPU

– Data

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Principle – Error Prediction/Classification Feedback

19

X

If Error Adjust Connexion Weights
Training Examples Prediction or

Classification

Neural Networks in One Slide

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Principle – Error Prediction/Classification Feedback

20

X

If Error Adjust Connexion Weights
Training Examples Prediction or

Classification

Neural Networks in One Two Slides

θ1

Σθ2 sigmoidθ3

sigmoid(θ0+θ1x1+ θ2x2+…)
Weighted Sum

Weights Non Linear
Activation Function

Bias

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Foundation

• Neural Network =
• Successive Layers of Logistic Regression =
• Successive Layers of Linear Regression + Non

Linear Activation Function

Σ

Σ

Σ

Σ

+1

x1

x2

x3

y2

y3

y1

+1
+1θ(1) θ(3)θ(2)

sigmoidΣ
sigmoidΣ

sigmoid

sigmoidΣ

sigmoid

sigmoidΣ

sigmoidΣ

sigmoid

sigmoid

sigmoid

sigmoid

sigmoid

Σ

Σ

Σ

21

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Foundation

• Neural Network =
• Successive Layers of Logistic Regression =
• Successive Layers of Linear Regression + Non

Linear Activation Function

Σ

Σ

Σ

Σ

x1

x2

x3

y2

y3

y1

1st Layer Output Layer2nd Layer

Σ
Σ

Σ

Σ

Σ
softmaxΣ

Σ

Σ

22

ReLUReLU

Input Layer

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Example (TensorFlow PlayGround)

23

http://playground.tensorflow.org/

http://playground.tensorflow.org/

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Nice Animation [3Blue1Brown]

https://www.youtube.com/watch?v=aircAruvnKk
24

https://www.youtube.com/watch?v=aircAruvnKk

Deep Learning – Music Generation – 2019Jean-Pierre Briot

A First Example of Music Generation

25

Deep Learning – Music Generation – 2019Jean-Pierre Briot
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    

Curation Configuration Selection

Artistic Content Generation Basic Cycle

• Curation
– Collecting Examples (Training Set)
– Extensional Definition of the Style

• Configuration
– of the (Selected) Learning Model/Architecture

• Selection
– Among Results Generated

26

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Neural Network Direct Application

27

• Feedorward Architecture
• Classification Task (What Notes)
• Counterpoint (Chorale) Generation
• Training on the Set of (389) J. S. Bach Chorales (Choral Gesang)

Output: 3 MelodiesInput: 1 Melody

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Representation

C
B
A#
A
G#
G

Score

Piano Roll

One hot Encoding

0 0 0

1 1

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Representation

0

0

0

0
0

0

1

1

0

0

0
0

0

0

1

0

0
0

0

1

0

0

0
0

0

0

0

0

0
0

0

1

1

0

0

0
0

0

A

C

hold
rest

29

If time slice = sixteenth

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Music / Representation / Network

30

…

Input layer Output layerHidden layers

Soprano
Voice

Alto
Voice

Tenor
Voice

Bass
Voice

… …

One hot vectors
Input nodes

Deep Learning – Music Generation – 2019Jean-Pierre Briot

ForwardBach

Original

Regenerated

Bach BWV 344 Chorale
(Training Example)

31

Deep Learning – Music Generation – 2019Jean-Pierre Briot

ForwardBach

Original

Regenerated

Bach BWV 423 Chorale
(Test Example)

32

Deep Learning – Music Generation – 2019Jean-Pierre Briot

ForwardBach Brazilian Hymn Counterpoint

33

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Bach Chorales

34

https://www.youtube.com/watch?v=QiBM7-5hA6o

• December 2016, DeepBach, Gaëtan Hadjeres
• Deep Learning
• Training Set = 352 Chorales

https://www.youtube.com/watch?v=QiBM7-5hA6o

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Reorchestration of God Save the Queen
by DeepBach [Hadjeres, 2017]

35

Deep Learning – Music Generation – 2019Jean-Pierre Briot

History of Neural Network-based Music Generation

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Number of Scientific Papers about Neural Networks
and Music (Generation, Classification…) [Pons, 2018]

���������� 1HXUDO�1HWZRUNV�)RU�0XVLF��$�-RXUQH\�7KURXJK�,WV�+LVWRU\

KWWSV���WRZDUGVGDWDVFLHQFH�FRP�QHXUDO�QHWZRUNV�IRU�PXVLF�D�MRXUQH\�WKURXJK�LWV�KLVWRU\���I��F����IE ���

2IYVEP�2IX[SVOW�*SV�1YWMG��%�.SYVRI]
8LVSYKL�-XW�,MWXSV]

*NQCH�0NMR
/BS����������-���LHM�QD@C

.BOZ�UIJOHT�IBWF�IBQQFOFE�CFUXFFO�UIF�QJPOFFSJOH�QBQFST�XSJUUFO�CZ�-FXJT�BOE�5PEE

JO�UIF���T�BOE�UIF�DVSSFOU�XBWF�PG�("/T�DPNQPTFST��"MPOH�UIBU�KPVSOFZ
�DPOOFDUJPOJTUT�

XPSL�XBT�GPSHPUUFO�EVSJOH�UIF�"*�XJOUFS
�WFSZ�JOGMVFOUJBM�OBNFT�	MJLF�4DINJEIVCFS�PS

/H
�DPOUSJCVUFE�TFNJOBM�QVCMJDBUJPOT�BOE
�JO�UIF�NFBOUJNF
�SFTFBSDIFST�IBWF�NBEF

UPOT�PG�BXFTPNF�QSPHSFTT�

8F�XPO�U�CF�HPJOH�UISPVHI�FWFSZ�TJOHMF�QBQFS�JO�UIF�GJFME�PG�OFVSBM�OFUXPSLT�GPS�NVTJD

OPS�EJWJOH�JOUP�UFDIOJDBMJUJFT
�CVU�XF�MM�DPWFS�XIBU�XF�DPOTJEFS�UIF�NJMFTUPOFT�UIBU

IFMQFE�TIBQJOH�UIF�DVSSFOU�TUBUF�PG�NVTJD�"*�h�UIJT�CFJOH�B�OJDF�FYDVTF�UP�HJWF�DSFEJU�UP

UIFTF�XJME�SFTFBSDIFST�XIP�EFDJEFE�UP�DBSF�BCPVU�B�TJHOBM�UIBU�JT�OPUIJOH�FMTF�CVU�DPPM�

-FU�T�TUBSU�

[Pons, 2018]
37

Imagenet

Deep Learning – Music Generation – 2019Jean-Pierre Briot

#Citations

38

#Citations Year

105

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Neural Networks Evolution

39

20202000

Perceptron

20101990198019701960

Perceptrons Backpropagation Pre-Training

20061957 1969 1986 2012

Imagenet

1995

SVM

1997

LSTM

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Neural Networks 4 Music Generation Evolution

40

20202000

Perceptron

20101990198019701960

Perceptrons Backpropagation Pre-Training

20061957 1969 1986 2012

Imagenet

1995

SVM

1997

LSTM

1988
1989

2004

Connection Science, Vol. 6, Nos. 2 & 3, 1994

Neural Network Music Composition by Prediction:
Exploring the Benefits of Psychoacoustic
Constraints and Multi-scale Processing

MICHAEL C. MOZER

In algorithmic music composition, a simple technique involves selecting notes sequentially
according to a transition table that specifes the probability of the next note as a function
of the previous context. A n extension of this transition-table approach is described, using
a recurrent autopredictive connectionist network called CONCERT. C O N C E R T is trained
on a set of pieces with the aim of extracting stylistic regularities. C O N C E R T can then be
used to compose new pieces. A central ingredient of C O N C E R T is the incorporation of
psychologically grounded representations of pitch, duration and harmonic structure. C O N -
C E R T was tested on sets of examples artificially generated according to simple rules and
was shown to learn the underlying structure, even where other approaches failed. In larger
experiments, CONCERTwas trained on sets ofJ. S. Bach pieces and traditional European
folk melodies and was then allowed to compose novel melodies. Although the compositions
are occasionally pleasant, and are preferred over compositions generated by a third-order
transition table, the compositions sufjerfrom a lack of global coherence. To overcome this
limitation, several methods are explored to permit C O N C E R T to induce structure at both
fine and coarse scales. In experiments with a training set of waltzes, these methods yielded
limited success, but the overall results cast doubt on the promise of note-by-note prediction
for composition.

KEYWORDS: Music composition, neural networks, recurrent networks, psy-
choacoustic representation, multi-scale processing.

1. Introduction

In creating music, composers bring to bear a wealth of knowledge of musical
conventions. Some of this knowledge is based on the experience of the individual,
some is culture specific, and perhaps some is universal. No matter what the source,
this knowledge acts to constrain the composition process, specifying, for example,
the musical pitches that form a scale, the pitch or chord progressions that are
agreeable, and stylistic conventions like the division of a symphony into movements
and the AABB form of a gavotte. If we hope to build automatic composition systems
that create agreeable tunes, it will be necessary to incorporate knowledge of musical
conventions into the systems. The difficulty is in deriving this knowledge in an

M. C. Mozer, Department of Computer Science, and Institute of Cognitive Science, University of
Colorado, Boulder, CO 80309-0430, USA. E-mail: moze@cs.colorado.edu.

D
ow

nl
oa

de
d

by
 [

N
ew

 Y
or

k
U

ni
ve

rs
ity

]
at

 1
5:

55
 1

7
O

ct
ob

er
 2

01
4

2002

A First Look at Music Composition
using LSTM Recurrent Neural Networks

Douglas Eck
doug@idsia.ch

Jürgen Schmidhuber
juergen@idsia.ch

Technical Report No. IDSIA-07-02

IDSIA / USI-SUPSI
Instituto Dalle Molle di studi sull’ intelligenza artificiale
Galleria 2
CH-6900 Manno, Switzerland

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.

1

ar
X

iv
:1

60
9.

03
49

9v
2

 [
cs

.S
D

]
 1

9
Se

p
20

16

2016

Sequential network Wavenet
Concert

LSTM Blues

Creation By Refinement: A Creativity Paradigm
for Gradient Descent Learning Networks

J. P. Lewis
Digital Sound Labora to ry

New York Ins t i t u t e of Technology
Old Westbury, NY 11568

ABSTRACT

\Ye describe a paradigm for creating novel examples from the class of patterns recognized by a
trained gradient descent associative learning network. The paradigm consists of a learning phase,
in which the networh learns to identify patterns of the desired class, followed by a simple syn-
thesis algorithm, in which a haphazard ‘creation’ is refined by a gradient descent search comple-
mentnrg t o the one used i n learning. This paradigm is alternative to one in which novel patterns
are obtained by applying novel inputs to a learned mapping, and can be used for creative prob-
Itwts such a< inusic compo<ition which are not described by an input-output mapping. A simple
4rnulntion is sho\\n in which a back propagation network learns to judge simple patterns
rcyrcwnting musical motifs, and then creates similar motifs.

INTRODUCTION

Thc ad\ ant age& \cliich conncrtionist~ or neural network approaches have shown in other applica-
t ions are potent i d l y relcvant to applications including simulation and computer arts which
require the grmcrntion of novel patterns having a desired structure. For example, in simulation
problems h c ~ e exist ing models are inadequate for simulation, the simulation may be developed
directly from samplc-s of the da t a to be modeled.

The connertionist approarh is particularly appropriate for computer arts applications such as
machine cnmpn’sitjon of music- /1,2] where the structure of the desired patterns is perceptually lim-
ited rather than dctermined by physical law in a more direct form. The problem of generating
pntterns const.rnined by this structure is somewhat parallel to the perceptual problems for which
connect i o n k t approaches are well suited.

C‘onversclj , attempt< to formulate satisfactory ‘‘laws’’ of composition (for example) have met with
thc difficulty that t hvse laws are characteristically fuzzy and ill suited for algorithmic description.
For exariiplr, in westcm tonal music a composition is considered to have a fundamental tone
(tonic) whi1.h is rrndwatond t hrnughout a composition and which should appear explicitly in the
ending In some c : w s a Composition does not end on the tonic however, and occasionally a com-
position can be undr.rstootl in terms of more than one tonic. Significantly, the existence of excep-
tions does not invalidate the notion of tonality; music exhibiting these exceptions may neverthe-
less be considered ‘tonal’ although we are unable to rigorously define what is meant by this.

We will consider several approaches to generating novel patterns with neural networks, and
describe one approach, termed ‘creation by refinement’ (CBH), which is suited for non-
representat.iona1 creative problems such as music composition.

11-229

Peter M. Todd
Department of Psychology
Stanford University
Stanford, California 94305 USA
todd@psych.stanford.edu

With the advent of von Neumann-style computers,
widespread exploration of new methods of music
composition became possible. For the first time,
complex sequences of carefully specified symbolic
operations could be performed in a rapid fashion.
Composers could develop algorithms embodying
the compositional rules they were interested in and
then use a computer to carry out these algorithms.
In this way, composers could soon tell whether the
results of their rules held artistic merit. This ap-
proach to algorithmic composition, based on the
wedding between von Neumann computing ma-
chinery and rule-based software systems, has been
prevalent for the past thirty years.

The arrival of a new paradigm for computing has
made a different approach to algorithmic composi-
tion possible. This new computing paradigm is
called parallel distributed processing (PDP), also
known as connectionism. Computation is per-
formed by a collection of several simple processing
units connected in a network and acting in coopera-
tion (Rumelhart and McClelland 1986). This is in
stark contrast to the single powerful central pro-
cessor used in the von Neumann architecture. One
of the major features of the PDP approach is that it
replaces strict rule-following behavior with regu-
larity-learning and generalization (Dolson 1989).
This fundamental shift allows the development of
new algorithmic composition methods that rely
on learning the structure of existing musical ex-
amples and generalizing from these learned struc-
tures to compose new pieces. These methods con-
trast greatly with the majority of older schemes
that simply follow a previously assembled set of
compositional rules, resulting in brittle systems
typically unable to appropriately handle unexpected
musical situations.

Computer Music Journal, Vol. 13, No. 4, Winter 1989,
? 1989 Massachusetts Institute of Technology.

A Connectionist

Approach To Algorithmic

Composition

To be sure, other algorithmic composition meth-
ods in the past have been based on abstracting cer-
tain features from musical examples and using
these to create new compositions. Techniques such
as Markov modeling with transition probability
analysis (Jones 1981), Mathews' melody interpola-
tion method (Mathews and Rosler 1968), and Cope's
EMI system (Cope 1987) can all be placed in this
category. However, the PDP computational para-
digm provides a single powerful unifying approach
within which to formulate a variety of algorithmic
composition methods of this type. These new learn-
ing methods combine many of the features of the
techniques listed above and add a variety of new ca-
pabilities. Perhaps most importantly, though, they
yield different and interesting musical results.

This paper presents a particular type of PDP
network for music composition applications. Vari-
ous issues are discussed in designing the network,
choosing the music representation used, training
the network, and using it for composition. Com-
parisons are made to previous methods of algo-
rithmic composition, and examples of the net-
work's output are presented. This paper is intended
to provide an indication of the power and range of
PDP methods for algorithmic composition and to
encourage others to begin exploring this new ap-
proach. Hence, rather than merely presenting a
reduced compositional technique, alternative ap-
proaches and tangential ideas are included through-
out as points of departure for further efforts.

A Network for Learning Musical Structure

Our new approach to algorithmic composition is
first to create a network that can learn certain as-
pects of musical structure, second to give the net-
work a selection of musical examples from which
to learn those structural aspects, and third to let
the network use what it has learned to construct

Todd 27

Creation by Refinement

Deep Learning – Music Generation – 2019Jean-Pierre Briot

���������� 1HXUDO�1HWZRUNV�)RU�0XVLF��$�-RXUQH\�7KURXJK�,WV�+LVWRU\

KWWSV���WRZDUGVGDWDVFLHQFH�FRP�QHXUDO�QHWZRUNV�IRU�PXVLF�D�MRXUQH\�WKURXJK�LWV�KLVWRU\���I��F����IE ���

2IYVEP�2IX[SVOW�*SV�1YWMG��%�.SYVRI]
8LVSYKL�-XW�,MWXSV]

*NQCH�0NMR
/BS����������-���LHM�QD@C

.BOZ�UIJOHT�IBWF�IBQQFOFE�CFUXFFO�UIF�QJPOFFSJOH�QBQFST�XSJUUFO�CZ�-FXJT�BOE�5PEE

JO�UIF���T�BOE�UIF�DVSSFOU�XBWF�PG�("/T�DPNQPTFST��"MPOH�UIBU�KPVSOFZ
�DPOOFDUJPOJTUT�

XPSL�XBT�GPSHPUUFO�EVSJOH�UIF�"*�XJOUFS
�WFSZ�JOGMVFOUJBM�OBNFT�	MJLF�4DINJEIVCFS�PS

/H
�DPOUSJCVUFE�TFNJOBM�QVCMJDBUJPOT�BOE
�JO�UIF�NFBOUJNF
�SFTFBSDIFST�IBWF�NBEF

UPOT�PG�BXFTPNF�QSPHSFTT�

8F�XPO�U�CF�HPJOH�UISPVHI�FWFSZ�TJOHMF�QBQFS�JO�UIF�GJFME�PG�OFVSBM�OFUXPSLT�GPS�NVTJD

OPS�EJWJOH�JOUP�UFDIOJDBMJUJFT
�CVU�XF�MM�DPWFS�XIBU�XF�DPOTJEFS�UIF�NJMFTUPOFT�UIBU

IFMQFE�TIBQJOH�UIF�DVSSFOU�TUBUF�PG�NVTJD�"*�h�UIJT�CFJOH�B�OJDF�FYDVTF�UP�HJWF�DSFEJU�UP

UIFTF�XJME�SFTFBSDIFST�XIP�EFDJEFE�UP�DBSF�BCPVU�B�TJHOBM�UIBU�JT�OPUIJOH�FMTF�CVU�DPPM�

-FU�T�TUBSU�

Neural Networks 4 Music Generation Evolution

41

20202000

Perceptron

20101990198019701960

Perceptrons Backpropagation Pre-Training

20061957 1969 1986 2012

Imagenet

1995

SVM

1997

LSTM

1988
1989

2004

Connection Science, Vol. 6, Nos. 2 & 3, 1994

Neural Network Music Composition by Prediction:
Exploring the Benefits of Psychoacoustic
Constraints and Multi-scale Processing

MICHAEL C. MOZER

In algorithmic music composition, a simple technique involves selecting notes sequentially
according to a transition table that specifes the probability of the next note as a function
of the previous context. A n extension of this transition-table approach is described, using
a recurrent autopredictive connectionist network called CONCERT. C O N C E R T is trained
on a set of pieces with the aim of extracting stylistic regularities. C O N C E R T can then be
used to compose new pieces. A central ingredient of C O N C E R T is the incorporation of
psychologically grounded representations of pitch, duration and harmonic structure. C O N -
C E R T was tested on sets of examples artificially generated according to simple rules and
was shown to learn the underlying structure, even where other approaches failed. In larger
experiments, CONCERTwas trained on sets ofJ. S. Bach pieces and traditional European
folk melodies and was then allowed to compose novel melodies. Although the compositions
are occasionally pleasant, and are preferred over compositions generated by a third-order
transition table, the compositions sufjerfrom a lack of global coherence. To overcome this
limitation, several methods are explored to permit C O N C E R T to induce structure at both
fine and coarse scales. In experiments with a training set of waltzes, these methods yielded
limited success, but the overall results cast doubt on the promise of note-by-note prediction
for composition.

KEYWORDS: Music composition, neural networks, recurrent networks, psy-
choacoustic representation, multi-scale processing.

1. Introduction

In creating music, composers bring to bear a wealth of knowledge of musical
conventions. Some of this knowledge is based on the experience of the individual,
some is culture specific, and perhaps some is universal. No matter what the source,
this knowledge acts to constrain the composition process, specifying, for example,
the musical pitches that form a scale, the pitch or chord progressions that are
agreeable, and stylistic conventions like the division of a symphony into movements
and the AABB form of a gavotte. If we hope to build automatic composition systems
that create agreeable tunes, it will be necessary to incorporate knowledge of musical
conventions into the systems. The difficulty is in deriving this knowledge in an

M. C. Mozer, Department of Computer Science, and Institute of Cognitive Science, University of
Colorado, Boulder, CO 80309-0430, USA. E-mail: moze@cs.colorado.edu.

D
ow

nl
oa

de
d

by
 [

N
ew

 Y
or

k
U

ni
ve

rs
ity

]
at

 1
5:

55
 1

7
O

ct
ob

er
 2

01
4

2002

A First Look at Music Composition
using LSTM Recurrent Neural Networks

Douglas Eck
doug@idsia.ch

Jürgen Schmidhuber
juergen@idsia.ch

Technical Report No. IDSIA-07-02

IDSIA / USI-SUPSI
Instituto Dalle Molle di studi sull’ intelligenza artificiale
Galleria 2
CH-6900 Manno, Switzerland

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.

1

ar
X

iv
:1

60
9.

03
49

9v
2

 [
cs

.S
D

]
 1

9
Se

p
20

16

2016

Sequential network Wavenet
Concert

LSTM Blues

Creation By Refinement: A Creativity Paradigm
for Gradient Descent Learning Networks

J. P. Lewis
Digital Sound Labora to ry

New York Ins t i t u t e of Technology
Old Westbury, NY 11568

ABSTRACT

\Ye describe a paradigm for creating novel examples from the class of patterns recognized by a
trained gradient descent associative learning network. The paradigm consists of a learning phase,
in which the networh learns to identify patterns of the desired class, followed by a simple syn-
thesis algorithm, in which a haphazard ‘creation’ is refined by a gradient descent search comple-
mentnrg t o the one used i n learning. This paradigm is alternative to one in which novel patterns
are obtained by applying novel inputs to a learned mapping, and can be used for creative prob-
Itwts such a< inusic compo<ition which are not described by an input-output mapping. A simple
4rnulntion is sho\\n in which a back propagation network learns to judge simple patterns
rcyrcwnting musical motifs, and then creates similar motifs.

INTRODUCTION

Thc ad\ ant age& \cliich conncrtionist~ or neural network approaches have shown in other applica-
t ions are potent i d l y relcvant to applications including simulation and computer arts which
require the grmcrntion of novel patterns having a desired structure. For example, in simulation
problems h c ~ e exist ing models are inadequate for simulation, the simulation may be developed
directly from samplc-s of the da t a to be modeled.

The connertionist approarh is particularly appropriate for computer arts applications such as
machine cnmpn’sitjon of music- /1,2] where the structure of the desired patterns is perceptually lim-
ited rather than dctermined by physical law in a more direct form. The problem of generating
pntterns const.rnined by this structure is somewhat parallel to the perceptual problems for which
connect i o n k t approaches are well suited.

C‘onversclj , attempt< to formulate satisfactory ‘‘laws’’ of composition (for example) have met with
thc difficulty that t hvse laws are characteristically fuzzy and ill suited for algorithmic description.
For exariiplr, in westcm tonal music a composition is considered to have a fundamental tone
(tonic) whi1.h is rrndwatond t hrnughout a composition and which should appear explicitly in the
ending In some c : w s a Composition does not end on the tonic however, and occasionally a com-
position can be undr.rstootl in terms of more than one tonic. Significantly, the existence of excep-
tions does not invalidate the notion of tonality; music exhibiting these exceptions may neverthe-
less be considered ‘tonal’ although we are unable to rigorously define what is meant by this.

We will consider several approaches to generating novel patterns with neural networks, and
describe one approach, termed ‘creation by refinement’ (CBH), which is suited for non-
representat.iona1 creative problems such as music composition.

11-229

Peter M. Todd
Department of Psychology
Stanford University
Stanford, California 94305 USA
todd@psych.stanford.edu

With the advent of von Neumann-style computers,
widespread exploration of new methods of music
composition became possible. For the first time,
complex sequences of carefully specified symbolic
operations could be performed in a rapid fashion.
Composers could develop algorithms embodying
the compositional rules they were interested in and
then use a computer to carry out these algorithms.
In this way, composers could soon tell whether the
results of their rules held artistic merit. This ap-
proach to algorithmic composition, based on the
wedding between von Neumann computing ma-
chinery and rule-based software systems, has been
prevalent for the past thirty years.

The arrival of a new paradigm for computing has
made a different approach to algorithmic composi-
tion possible. This new computing paradigm is
called parallel distributed processing (PDP), also
known as connectionism. Computation is per-
formed by a collection of several simple processing
units connected in a network and acting in coopera-
tion (Rumelhart and McClelland 1986). This is in
stark contrast to the single powerful central pro-
cessor used in the von Neumann architecture. One
of the major features of the PDP approach is that it
replaces strict rule-following behavior with regu-
larity-learning and generalization (Dolson 1989).
This fundamental shift allows the development of
new algorithmic composition methods that rely
on learning the structure of existing musical ex-
amples and generalizing from these learned struc-
tures to compose new pieces. These methods con-
trast greatly with the majority of older schemes
that simply follow a previously assembled set of
compositional rules, resulting in brittle systems
typically unable to appropriately handle unexpected
musical situations.

Computer Music Journal, Vol. 13, No. 4, Winter 1989,
? 1989 Massachusetts Institute of Technology.

A Connectionist

Approach To Algorithmic

Composition

To be sure, other algorithmic composition meth-
ods in the past have been based on abstracting cer-
tain features from musical examples and using
these to create new compositions. Techniques such
as Markov modeling with transition probability
analysis (Jones 1981), Mathews' melody interpola-
tion method (Mathews and Rosler 1968), and Cope's
EMI system (Cope 1987) can all be placed in this
category. However, the PDP computational para-
digm provides a single powerful unifying approach
within which to formulate a variety of algorithmic
composition methods of this type. These new learn-
ing methods combine many of the features of the
techniques listed above and add a variety of new ca-
pabilities. Perhaps most importantly, though, they
yield different and interesting musical results.

This paper presents a particular type of PDP
network for music composition applications. Vari-
ous issues are discussed in designing the network,
choosing the music representation used, training
the network, and using it for composition. Com-
parisons are made to previous methods of algo-
rithmic composition, and examples of the net-
work's output are presented. This paper is intended
to provide an indication of the power and range of
PDP methods for algorithmic composition and to
encourage others to begin exploring this new ap-
proach. Hence, rather than merely presenting a
reduced compositional technique, alternative ap-
proaches and tangential ideas are included through-
out as points of departure for further efforts.

A Network for Learning Musical Structure

Our new approach to algorithmic composition is
first to create a network that can learn certain as-
pects of musical structure, second to give the net-
work a selection of musical examples from which
to learn those structural aspects, and third to let
the network use what it has learned to construct

Todd 27

Creation by Refinement

Deep Learning – Music Generation – 2019Jean-Pierre Briot

The Old Emperor Old Clothes

42

Deep Learning – Music Generation – 2019Jean-Pierre Briot

The Old Emperor Old Clothes (Neural Networks)

43

• Single Hidden Layer Neural Network

• Hand Made

• Technical Limitations

• Slow CPU

• Small memory

• Few Examples

Deep Learning – Music Generation – 2019Jean-Pierre Briot

First Experiments in Using Artificial Neural Networks
for Music Generation

1988–1989
• Lewis, J. P., Creation by Refinement: A Creativity Paradigm for Gradient

Descent Learning Networks, International Conference on Neural Networks,
San Diego, CA, USA, July 1988, pp. II-229–233.

• Todd, Peter M., A Sequential Network Design for Musical Applications,
Proceedings of the 1988 Connectionist Models Summer School, CMU, June
1988, Touretsky, D., Hinton, G., Sejnowski, T. (eds), Morgan Kaufmann, pp.
76–84, 1989.

• Todd, Peter M., A Connectionist Approach to Algorithmic Composition,
Computer Music Journal (CMJ), MIT Press, 13(4):27–43, 1989.

2004
• Mozer, M. C., Neural Network Music Composition by Prediction: Exploring the

Benefits of Psychoacoustic Constraints and Multi-scale Processing,
Connection Science, 6(2&3):247–280, 1994

44

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Todd’s Architecture Variation [Todd, 1989]
Fig. 1. A network design
which can learn to associ-
ate time windows (e.g.
measures) in a piece of
music with the following
time windows. Here, one
measure as input produces
the following measure as

output. Circles represent
individual units, lines rep-
resent directed connec-
tions between units, and
arrows indicate the flow of
activation through the net-
work. Not all units or con-
nections are shown.

new pieces of music. We can satisfy the first step
by designing a network that can exactly reproduce
a given set of musical examples, because being able
to reproduce the examples requires that the net-
work has learned a great deal about their structure.

A network design that meets this music learning
goal has been described in a previous paper by this
authQr (Todd 1988). This network has been applied
to both the task of algorithmic composition and the
psychological modeling of certain aspects of human
musical performance, such as tonal expectation
(Bharucha and Todd 1989). This design is presented
here. As in the original paper, I will restrict the mu-
sical domain to the relatively simple class of mono-
phonic melodies. This restriction simplifies the
nature of the network by avoiding certain problems
associated with the representation of polyphony,
which will be indicated later. However, the mono-
phonic domain remains musically realistic and in-
teresting, as the examples will show.

Network Design

time window N+ 1

t Output
r' . . .

Input

time window N

Since music is fundamentally a temporal process,
the first consideration in designing a network to
learn melodies is how to represent time. One way
time may be represented is by standard musical no-
tation translated into an ordered spatial dimension.
Thus, the common staff represents time flowing
from left to right, marked off at regular intervals by
measure bars. Music could be represented in a simi-
lar fashion in a PDP network, with a large chunk of
time being processed simultaneously, in parallel,
with different locations in time captured by differ-
ent positions of processing units in the network. In
the limiting case, the entire melody could be pre-
sented to the network simultaneously; alterna-
tively, and requiring fewer input units, a sliding
window of successive time-periods of fixed size
could be used. This windowed approach is common
in speech applications of various types, as in the
NetTalk word-to-speech network (Sejnowski and
Rosenberg 1987) and various phoneme recognition
systems (Waibel et al. 1987).

In essence, the time-as-spatial-position represen-
tation converts the problem of learning music into

the problem of learning spatial patterns. For ex-
ample, learning a melody may consist of learning to
associate each measure of the melody with the next
one, as illustrated in Fig. 1. Thus when a particular
measure is presented as the input to the network,
the following measure will be produced as output.
Learning to perform such pattern association is
something at which PDP networks are quite good.
Furthermore, networks are able to generalize to
new patterns they have not previously learned, pro-
ducing reasonable output in those cases as well.
Thus, a new measure of music could be given as
the input to a trained network, and it would pro-
duce as output its best guess at what would be a
reasonable following measure. This generalizing be-
havior is the primary motivation for using PDP net-
works in a compositional context, since what we
are interested in is exactly the generation of reason-
able musical patterns in new situations.

While the spatial-position representation of time
may be acceptable, it seems more intuitive to treat
music as a sequential phenomenon, with notes

Computer Music Journal 28

Fig. 2. A sequential net-
work design which can
learn to produce a se-
quence of notes, using a
memory of the notes al-
ready produced. This

memory is provided by the
feedback connections
shown, which channel
produced notes back into
the network.

noteN N

note N+ 1

note N+2 +

t Output

feedback

being produced one after another in succession.
This view calls for the use of a sequential network,
which learns to produce a sequence of single notes
rather than a set of notes simultaneously. In this
case, time is represented by the relative position of
a note in the sequence, rather than the spatial posi-
tion of a note in a window of units. Where net-
works utilizing a spatial representation of time
learn to associate a successive chunk of time with
the previous chunk, sequential networks learn to
produce the next note in a sequence based on some
memory of past notes in the sequence. Thus, some
memory of the past is needed in a sequential net-
work, and this is provided by some sort of feedback
connections that cycle current network activity
back into the network for later use, as can be seen
in Fig. 2.

The learning phases of these two types of net-
works are very similar-both learn to associate
certain output patterns with certain inputs by ad-
justing the weights on connections in the network.
But their operation during production of melodies
is quite different. Basically, the windowed-time pat-
tern associator network produces a static output
given its input: one window of time in produces
one window of time out. The sequential network,
on the other hand, cycles repeatedly to yield a se-
quence of successively produced outputs. Each of
these outputs further influences the production of
later outputs in the sequence via the network's
feedback connections and its generalizing ability.
This ongoing dynamic behavior has great implica-
tions for the sorts of sequences the network will
produce, as will be seen later in this article.

Actually, the windowed-time and sequential-time
approaches are not contradictory and may be com-
bined to advantage. A sequential network that pro-
duces a sequence of time windows, rather than
merely single notes, would learn a different set of
associations and so make different generalizations
during the composition phase. For the current dis-
cussion, though, a standard, single-event output se-
quential network design of the type first proposed
by Jordan (1986a) has been used. A network of this
type can learn to reproduce several monophonic
melodies, thus capturing the important structural
characteristics of a collection of pieces simulta-
neously. This makes it an ideal candidate for our
purposes.

Jordan's sequential network design is essentially
a typical, three-layer, feedforward network (Dolson
1989) with some modifications mostly in the first
(input) layer, as shown in Fig. 3. One set of units in
the first layer, called the plan units, indicate which
sequence (of several possibilities) is being learned
or produced. The units do this by having a fixed set
of activations-the plan-turned on for the dura-
tion of the sequence. In effect the plan tells the
network what to do by designating or naming the
particular sequence being learned or produced.

The context units (also called state units) make
up the remainder of the first layer. These units are
so named because they maintain the memory of the
sequence produced so far, which is the current con-

Todd 29

for both output and con-
text; context units also
have self-feedback connec-
tions. Each network out-
put indicates the pitch at
a certain time slice in the
melody.

t

Context
(memory of melody so far)

text or state that the network uses to produce the
next element in the sequence. Each successive out-
put of the network is entered into this memory by
the feedback connections indicated from the output
units to the context units.

A memory of more than just the single previous
output is kept by having a self-feedback connection
on each individual context unit, as shown in Fig. 3.
These connections have a strength (weight) of less
than 1.0, so that each context unit computes an
exponentially decreasing sum of all of its previous
inputs, which are the network's outputs. For ex-
ample, if the self-feedback strength were 0.8, then a
unit's memory would decrease proportionally by
the amounts 0.8, 0.64, 0.51, 0.41, etc., as long as
nothing new were entered into its memory. This
connection strength cannot be greater than 1.0 or
the activation values of the context units would ex-
plode exponentially.

The context units and plan units are all fully in-
terconnected by a set of learned, weighted connec-
tions to the next layer of units, the hidden units.
The hidden units are so named because they are
neither at the network's input nor output, and so

are in some sense buried inside the network. The
hidden units combine the weighted information
from the (fixed) plan units and the (evolving) con-
text units, processing it via their logistic activa-
tion functions (Dolson 1989). They then pass on
this processed information through the final set of
weights to the output units. The output units then
determine what the network will produce as the
next element in the sequence. Each successive out-
put is also finally passed along the feedback con-
nections back to the context units, where they are
added into the changing context. This in turn en-
ables the computation of the following element in
the sequence, and the cycle repeats.

The actual number of the various types of units
used in the network depends on several factors. The
number of plan units must be sufficient to specify
different plans for all the different sequences to be
learned. For example, we might want to use plans
that have only one plan unit on at a time (i.e., with
an activation of 1.0), while all the rest of the plan
units are off (i.e., they have activations of 0.0). The
particular plan unit that is on, for example the third
or the fifth, specifies the sequence being processed
(i.e., sequence number 3 or number 5). This type of
plan is known as a localist representation, because
each unit represents an entire entity (here an entire
sequence) locally, by itself. If we wanted to learn N
sequences for example, we would need N plan units
to specify all of them in this way. On the other
hand, a binary-coded plan representation would be
more compact: in this case, we would need only
log2 N plan units to create N different plans. Thus
plan 011 would specify sequence number 4 out of 8
possible, starting with 000. This is a distributed
type of representation, because each entity is repre-
sented by a pattern of activation spread over several
units at once.

The number of output units in the network de-
pends on the representation of the sequence ele-
ments used, so it cannot be specified until this
representation is settled. The number of context
units depends on the type of memory desired. We
will see below that having an equal number of out-
put units and context units is useful. Finally, the
number of hidden units depends on what the net-
work must learn and cannot be exactly specified. If

Computer Music Journal

Fig. 3. The sequential net-
work design used for com-
positional purposes in this
paper. The current musical
representation requires
note-begin (nb) and pitch
(D4-C6) units, as shown

time slice N

I

30

[Todd, 1988]

Feedforward architecture
Iterative generation

Recurrent architecture
Iterative generation

Recurrent + Conditioning architecture
Iterative generation

45

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Todd’s Conditioned Generation
Fig. 4. Network output
using extrapolation from a
single melody. In each
case, both piano-roll-style
output and common-prac-
tice music notation are
shown. Network outputs

for the first 34 time-slices
are shown, with row 0
(bottom row) correspond-
ing to the note-begin unit,
and rows 1 - 14 corre-
sponding to the pitch
units, D4-C6. A black bar

indicates the unit is on.
Where the network output
goes into a fixed loop, this
is indicated by repeat bars
in the music notation.
(a) Melody 1, which the
network is originally

trained to produce with a
plan of 1.0. (b) Extrapola-
tion output using a plan of
0.0. (c) Extrapolation out-
put using a plan of 2.0. (d)
Extrapolation output using
a plan of 3.0.

(a)

z ~ ~ ~ ~ ~ ~ ~ mm

r4 J I J .1 1. - J -r r II

(b)

2 3 2] 4 3 6 7 a 3 10 11 12 13 14 13 16 17 I 8 9 20 21 21 2 0 24 21 2 27 2B 1 32 3

&LJ j 7 J. r-l. J r r 'J Ji 41

(c)

rI p J J J IB p Ip w J J l

(d)

. 7 . * s a 7 9 g 0 o 12 13 ,4 51 1 7 ,8 19 20 2 20 1 2 5 21 27 21 2g ~ 31 32 31 3 3*

1= lo ID ̂ T ̂ ̂ --

similarity of common pitch movement patterns in
different keys.

Duration

The duration of notes in the melodic sequences
must also be represented. As with the pitch repre-
sentation, two clear alternatives present them-
selves. First, the duration could be specified in a
separate pool of output (and context) units, along-
side the pitch output units. The units could code

for note duration in a localist fashion, with one
unit designating a quarter-note, another a dotted

eighth-note, etc. Or they could use a distributed

representation, with for instance the number of
units "on" (activation 1.0) representing the dura-
tion of the current note in sixteenth-notes. With
the localist representation, the corresponding con-
text units would hold a memory of the lengths of
notes played recently in the melody; in the dis-
tributed case, the context units would be harder to

analyze.
Alternatively, duration can be removed from ex-

plicit representation at the output units. Instead,
the melody could be divided into equally spaced
time slices of some fixed length, and each output in
the sequence would correspond to the pitch during
one time slice. Duration would then be captured by
the number of successive outputs and hence the
number of time slices a particular pitch stays on.
This is equivalent to thinking of a melody as a
function of pitch versus time (as in piano-roll nota-
tion), with the network giving the pitch value of
this function at equally spaced intervals of time.
I am using this time-slice representation for dura-
tion at present, in part because it simplifies the net-
work's output-no separate note-duration units are
needed. In addition, this representation allows the
context units to capture potentially useful pitch-
length information, as will be indicated below. The
form of this representation can be seen in the ex-
ample network output in Figs. 4-6.

The specific fixed length of the time slices to use
should be the greatest common factor of the dura-
tions of all the notes in the melodies to be learned.
This ensures that the duration of every note will be

represented properly with a whole number of time
slices. For example, if our network were only to
learn the melody A-B-C with corresponding dura-
tions quarter-note, eighth-note, and dotted quarter-
note, we would use time slices of eighth-note dura-
tion. The sequence the network would learn would
then be {A, A, B, C, C, C}.

With this duration representation, the context
units now not only capture what pitches were used

recently in the melody, but also for how long. This
is because the longer a given note's duration is, the
more time slices its pitch will appear at the output,

Computer Music Journal

I I

-2 -- - -
, ~ ~ - - - m -lm--mil

: - - - - - - - - - - - - - - m lm - - -
m2 - m 7 9 0 1 2 1 5 I 7 1 9 2 1 2 2 - 2 0 2 8 2 0 3 2 3

I - - I W

34

Extrapolation Interpolation

Original
melody

(plan 1.0)

New
melody

(plan 0.0)

New
melody

(plan 2.0)

Original
melodyA
(plan 0.0)

Original
melodyB
(plan 1.0)

New
melodyA-B
(plan 0.5)

Fig. 5. Network output
using interpolation be-
tween two melodies.
(a) Melody 1, trained with
plan 1.0. (b) Interpolation
output using a plan of 0.8.
(c) Interpolation output
using a plan of 0.7. (d) In-

(a)

terpolation output using a
plan of 0.5; an additional
34 successive time-slices
(68 total) are shown to
indicate longer-term be-
havior. (e) Interpolation
output using a plan of 0.2.
(f) Melody 2, trained with
plan 0.0.

Fig. 6. Network output
using altered melody
space. (a) Melody 3,
trained using plan vector
(0.0, 1.0). (b) Melody 4,
trained using plan vector
(1.0, 1.0). (c) Interpolation
output between melodies
1 and 2, incorporating
training on 3 and 4, using

plan vector (0.5, 0.0). (d)
Interpolation output be-
tween melodies 1 and 2,
trained with 8 hidden
units, using a plan of 0.5.
(e) Interpolation output
between melodies 1 and 2,
retrained with 15 hidden
units, using a plan of 0.5.

,J n ^J J1 1 J J - r r -11
;- 7

-
.m7 .

-- . 7 ia i. --7 ,,, ,
-

.I5
--

27 2-- 29 --31 233

I-~ I D IJ '- - -~lI J J J J J J J r r i 11

(b)

(c)

72 7 6 9 * 7 ' 7 7 9 10 e ,7 g6 29 0 20 23 20 29 20 7 28 2 3 30 1 32 30 30

I4 J r , 41
(d)

005m 6 9ml 0 g r B B --m

u
0 2 0 7 2 5 26 27 20 29 .0 7 3

2 0 63 67 a 9 3 0 31 002 953 5 1 6 11 9 00 23 00 00 29 25 06 23 26 29 09 9320 330 3

r PP~ ~ r p r - r

(a)

6 la 09 6 6 9 00000 090 26030620 9 00 2 3 '7 2 7 7 7 ,o-, -7. 7 ,. 777.-27 2 3 23

(b)

r J rrrr r Jl
(c)

3
i 4 0 A 9 t0.0 0 2 7 2 7 3 2

(d)

4 J I J r P ' J 4lI
I-I

4 r r p I. r ' P p p I r' - -T r - 11

(e)
009663 6 9 '0 ' 009563 6 9 r2 '0 00 7 00 29 0 99 99 3909

mmmm mmmm mm - m mim
3 0095 3 5 0 3 37 7 7 793 36 33 ,,, 7600 0 00 09

2 5 26 27 26 29 00 93 00
33 09

r rr r p- r r
(f)

7 75 6 7 3
1

0 a 7 7 6
r r 7 2 0 0

r2
- 0 507 23060 9

2,3300-

Im Ir r...

Todd

I Iel

I

35

46

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Todd’s Architecture Prospects/Addendum (1/2) [Todd, 1989]

• Structure

• Hierarchy

• Multiple Time/Clocks

47

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Todd’s Architecture Prospects/Addendum (2/2) [Todd, 1989]

• Precursor of

• Hierarchy
– Ex: MusicVAE [Roberts et al., 2018]

• Multiple Time/Clocks
– Ex: Clockwork RNN [Koutnik et al., 2014]

– SampleRNN [Mehri et al., 2017]

48

A Clockwork RNN

Figure 1. CW-RNN architecture is similar to a simple RNN with an input, output and hidden layer. The hidden layer is partitioned into g
modules each with its own clock rate. Within each module the neurons are fully interconnected. Neurons in faster module i are connected
to neurons in a slower module j only if a clock period Ti < Tj .

2. Related Work
Contributions to the sequence modeling and recognition
that are relevant to CW-RNN are introduced in this section.
The primary focus is on RNN extensions that deal with the
problem of bridging long time lags.

One model that is similar in spirit to our approach is the
NARX RNN1 (Lin et al., 1996). But instead of simplifying
the network, it introduces an additional sets of recurrent
connections with time lags of 2,3..k time steps. These ad-
ditional connections help to bridge long time lags, but in-
troduce many additional parameters that make NARX RNN
training more difficult and run k times slower.

Long Short-Term Memory (LSTM; Hochreiter & Schmid-
huber, 1997) uses a specialized architecture that allows in-
formation to be stored in a linear unit called a constant error

carousel (CEC) indefinitely. The cell containing the CEC
has a set of multiplicative units (gates) connected to other
cells that regulate when new information enters the CEC
(input gate), when the activation of the CEC is output to the
rest of the network (output gate), and when the activation
decays or is ”forgotten” (forget gate). These networks have
been very successful recently in speech and handwriting
recognition (Graves et al., 2005; 2009; Sak et al., 2014).

Stacking LSTMs into several layers (Fernandez et al., 2007;
Graves & Schmidhuber, 2009) aims for hierarchical se-
quence processing. Such a hierarchy, equipped with Connec-

1NARX stands for Non-linear Auto-Regressive model with
eXogeneous inputs

tionist Temporal Classification (CTC; Graves et al., 2006),
performs simultaneous segmentation and recognition of se-
quences. Its deep variant currently holds the state-of-the-
art result in phoneme recognition on the TIMIT database
(Graves et al., 2013).

Temporal Transition Hierarchy (TTH; Ring, 1993) incre-
mentally adds high-order neurons in order to build a memory
that is used to disambiguate an input at the current time step.
This approach can, in principle, bridge time intervals of any
length, but with proportionally growing network size. The
model was recently improved by adding recurrent connec-
tions (Ring, 2011) that prevent it from bloating by reusing
the high-level nodes through the recurrent connections.

One of the earliest attempts to enable RNNs to handle
long-term dependencies is the Reduced Description Net-
work (Mozer, 1992; 1994). It uses leaky neurons whose
activation changes only a bit in response to its inputs. This
technique was recently picked up by Echo State Networks
(ESN; Jaeger, 2002).

A similar technique has been used by Sutskever & Hinton
(2010) to solve some serial recall tasks. These Temporal-
Kernel RNNs add a connection from each neuron to itself
that has a weight that decays exponentially in time. This
is implemented in a way that can be computed efficiently,
however, its performance is still inferior to LSTM.

Evolino (Schmidhuber et al., 2005; 2007) feeds the input
to an RNN (which can be e.g. LSTM to cope with long
time lags) and then transforms the RNN outputs to the target
sequences via a optimal linear mapping, that is computed

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Lewis’ Creation by Refinement (1/4) [Lewis, 1988]

• Training on 30 Manually Generated 5-Note Melodies
• 7 Possible Notes (from C to B, without alteration)
• Well Formed

– Possible Intervals:
» Unison, 3rd, 5th,
» Scale Degree Stepwise Motion

• Poorly Formed
– Excessive Motion or Excessive Repetition

• Binary Classification Training
– Well or Poorly Formed

49
Fig. 2.

Ynrnplcs o f ‘‘\I e11 formed” melodic figures used in training (left)
and f iguwh generated by creation by refinement (right).

References

1 .

2 .

3 .

4 .

5.

(i .

c

1 .

8 .

J A. hloorer, Rlusic and computer composition. Communications of the AGM. 15, 2 (1972),
104-1 13.

I Xc>n:Ai\, Fornia l i s f d Aluric. Indiana University Press, Bloomington, Indiana, 1971.

J Heichnrdt, Ed , Cybrrnetics, Art, and Ideas. New York Graphic Society, Greenwich,
C o n n , 1971.

7’. Kohonen, 1’. Lehtio, and E. Oja, Storage and processing of information in distributed
a<soc.intive mc’mory s j stems. in Parallel Models of Associative Memory (G. Hinton and J.A.
Anderson Eds.), Erlbaum Assoc., Hillsdale, NJ, 1981, p. 105.

11.E. I<umelhnrt and J.L RlcClelland, Eds., Parallel Distributcd Processing: Explorations in
f h c M i c r o s f r u c f u r r o f Cognition. RUT Press, Cambridge, Mass., 1986.
D [I. Pnrkrr , I , r a r n i ? i g - l o g i c , TR-47. Center for Computational Research in Economics and
Mnnngr*intsnt Science, MIT, 1985.

T J. Stjno\+shi and C.R. IZosenherg, NETtalk: A Parallel Network that Learns t o Read
A l o tid

I<. .Jonc*s, C ornpositiond applications of stochastic processes. Computu M u s i c Journal. 5 , 2

Johns I I o p k i n s EPX‘S technical report EEC‘S-86/01, Baltimore, 1986.

(1” 4 5 4 1 .

11-233

Ex. of Training Examples

Deep Learning – Music Generation – 2019Jean-Pierre BriotF
ig. 2.

Y
nrnplcs o

f ‘‘\I
e11 form

ed” m
elodic figures used in training (left)

and figuw
h generated by creation by refinem

ent (right).

R
eferen

ces

1.

2.

3
.

4.

5.

(i .

c

1
.

8
.

J
A

. hloorer, R
lusic and com

puter com
position.

C
om

m
unications of

the A
G

M
.

15, 2 (1972),
104-1 13.

I
X

c>n:A
i\, F

ornialisf d A
luric.

Indiana U
niversity P

ress, B
loom

ington, Indiana, 1971.

J
H

eichnrdt, E
d ,

C
ybrrnetics,

A
rt,

and Ideas.
N

ew
 Y

ork
G

raphic
S

ociety, G
reenw

ich,
C

o
n

n
 , 1971.

7’. K
ohonen, 1’.

L
ehtio, and E

. O
ja, S

torage and processing of
inform

ation in distributed
a<soc.intive m

c’m
ory s

j stem
s.

in P
arallel M

odels of A
ssociative M

em
ory (G

. H
inton and J.A

.
A

nderson E
d

s.), E
rlbaum

 A
ssoc., H

illsdale, N
J, 1981, p

. 105.

11.E
. I<

um
elhnrt and J.L

R

lcC
lelland, E

ds., P
arallel D

istributcd P
rocessing: E

xplorations in
fhc M

icrosfrucfurr of C
ognition. R

U
T

 P
ress, C

am
bridge, M

ass., 1986.
D

 [I. P
nrkrr, I,rarni?ig-logic, T

R
-47. C

enter for C
om

putational R
esearch in E

conom
ics and

M
nnngr*intsnt Science, M

IT
, 1985.

T
 J.

S
tjno\+

shi and
C

.R
. IZ

osenherg, N
E

T
talk: A

P

arallel
N

etw
ork

that
L

earns to R
ead

A
lo

 tid

I<. .Jonc*s, C ornpositiond applications o
f stochastic processes.

C
o

m
p

u
tu

 M
u

s
ic

 Journal.
5

, 2

Johns I Iopk in
s E

PX
‘S technical report E

E
C

‘S
-86/01, B

altim
ore, 1986.

(1”
4

5
4

1
.

11-233

Lewis’ Network Architecture

50

…
Input layer

5 * 7 =
35 nodes

1st Hidden layer
105 nodes

2nd Hidden layer
35 nodes

Output layer
1 node

C
D
E
F
G
A
B

Well formed ?

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Lewis’ Creation by Refinement (1/6)

51

…

C
D
E
F
G
A
B

Well formed

Initial
Random Values

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Lewis’ Creation by Refinement (2/6)

52

…

C
D
E
F
G
A
B

Well formed

Values

Input Values are Incrementally Manipulated
Under the Control of a Gradient Descent on Error in Predicted Well Formed

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Lewis’ Creation by Refinement (3/6)

53

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Lewis’ Creation by Refinement (4/6)

Ex. of Melodies Created by Refinement

• The Network Learned Preference for Stepwise and Triadic Motion
Fig. 2.

Ynrnplcs o f ‘‘\I e11 formed” melodic figures used in training (left)
and f iguwh generated by creation by refinement (right).

References

1 .

2 .

3 .

4 .

5.

(i .

c

1 .

8 .

J A. hloorer, Rlusic and computer composition. Communications of the AGM. 15, 2 (1972),
104-1 13.

I Xc>n:Ai\, Fornia l i s f d Aluric. Indiana University Press, Bloomington, Indiana, 1971.

J Heichnrdt, Ed , Cybrrnetics, Art, and Ideas. New York Graphic Society, Greenwich,
C o n n , 1971.

7’. Kohonen, 1’. Lehtio, and E. Oja, Storage and processing of information in distributed
a<soc.intive mc’mory s j stems. in Parallel Models of Associative Memory (G. Hinton and J.A.
Anderson Eds.), Erlbaum Assoc., Hillsdale, NJ, 1981, p. 105.

11.E. I<umelhnrt and J.L RlcClelland, Eds., Parallel Distributcd Processing: Explorations in
f h c M i c r o s f r u c f u r r o f Cognition. RUT Press, Cambridge, Mass., 1986.
D [I. Pnrkrr , I , r a r n i ? i g - l o g i c , TR-47. Center for Computational Research in Economics and
Mnnngr*intsnt Science, MIT, 1985.

T J. Stjno\+shi and C.R. IZosenherg, NETtalk: A Parallel Network that Learns t o Read
A l o tid

I<. .Jonc*s, C ornpositiond applications of stochastic processes. Computu M u s i c Journal. 5 , 2

Johns I I o p k i n s EPX‘S technical report EEC‘S-86/01, Baltimore, 1986.

(1” 4 5 4 1 .

11-233

54

Deep Learning – Music Generation – 2019Jean-Pierre Briot

• Attention

• Hierarchy

Lewis’ Creation by Refinement (5/6)

Ex. of Melodies Created by Hierarchical Refinement
(ABCD -> ABxCD scheme)

55

Deep Learning – Music Generation – 2019Jean-Pierre Briot

• Reinforcement

Lewis’ Creation by Refinement (6/6)

Not Reinforcement learning

Created Melodies which are Liked are Added to the Training Set

56

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Lewis’ Creation by Refinement Pioneering (1/3)

• Precursor of
• Gradient Descent Input Manipulation [Briot et al., 2017]
• Ex: DeepHear [Sun, 2016]

– Melody Consonant Accompaniment Creation

57

Input Bottleneck Layer

Similarity

Reference MelodyOutput

Input Manipulation

Generation

https://fephsun.github.io/2015/09/01/neural-music.html#

https://fephsun.github.io/2015/09/01/neural-music.html

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Lewis’ Creation by Refinement Pioneering (2/3)

• Precursor of

• Gradient Ascent Input Manipulation [Briot et al., 2017]

• Ex: DeepDream [Mordvintsev et al. 2015]
– Motif Detector Neuron Activation Maximization

58

Activation

Input Manipulation

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Lewis’ Creation by Refinement Pioneering (3/3)

59

Initial Image Deep Dream Image

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Structure Imposition (1/2) [Lattner et al., 2016]

60

• Constrained sampling, C-RBM [Lattner et al., 2016]

• Convolutional Restricted Boltzmann Machine (RBM)

• Combination of:
– Input Manipulation guided by Gradient Descent of current sample

» to impose Higher-Level Structure/Constraints:
• Structure (Structure Repetition, Ex: AABA), via Self-Similarity Matrix
• Tonality, via Similarity of Distribution of Pitch-Classes
• Meter (Rhythm Pattern/Signature and Beat Accent)

– Sampling Control, by Selective Gibbs sampling (SGS)
» at a Selected Low-Level (subset of variables)
» to realign selectively the sample to the learnt distribution

– Alternate IP/GD and SGS, controlled by Simulated Annealing

– But not exact as, e.g., Markov Constraints [Pachet & Roy, 2011]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Structure Imposition

61

– Structure (Repetition Structure, Ex: AABA)
» Self-Similarity Matrix
» For each Music Slice

– Tonality, via Similarity of Distribution of Pitch-Classes
» Key Estimation Vectors over Time

– Meter
» Duration and Accent Patterns (ex: on 1st and 3rd Beats)
» Via Relative Occurrence of Note Onsets

12 Minor Keys
12 Major Keys

Deep Learning – Music Generation – 2019Jean-Pierre Briot

C-RBM [Lattner et al., 2016]

62

https://soundcloud.com/pmgrbm

Input
manipulation

Sampling

Sample Structural Reference

Both Manipulation and Sampling of Input
because RBM’s "Output" is its Input

https://soundcloud.com/pmgrbm

Deep Learning – Music Generation – 2019Jean-Pierre Briot

C-RBM Examples

• RNN-RBM Sample

• Unconstrained Sample

• Template Piece

• Constrained Sample

https://soundcloud.com/pmgrbm
63

https://soundcloud.com/pmgrbm

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Mozer’s Rich Representation Model [Mozer, 1994]

[Mozer, 2004]

Note/Harmony

Duration/Rhythm

64

Neural Network Music Composition 257

Pitch Height Chroma Circle Circle of Fifths

Figure 2. Shepard's (1982) pitch representation.

scales-C, D, E, F, G, A and %are grouped together on the CF. The most
common pentatonic keys are similarly localized. Second, and perhaps more critical,
the C F can explain the subjective equality of the intervals of the diatonic scale. To
elaborate, Shepard points out that people tend to hear the successive steps of the
major scale as equivalent, although with respect to log frequency, some of the
intervals are only half as large as others. For example, in C major, the E-F and B-C
steps are half tones apart (minor seconds) while all others are a whole tone apart
(major seconds). The combination of the PH and the C F permits a representation
in which the distance between all major and minor seconds is the same. This is
achieved by using a scale ratio of approximately 3: 1 for the C C relative to the CF.

One desirable property of the overall PHCCCF representation is that distances
between pitches are invariant under transposition. Consider any two pitches, say,
D2 and G#4. Transposing the pitches preserves the distance between them in the
PHCCCF representation. Thus, the distance from D2 to W is the same as fkom
E2 to AM, from D l to G#3, and so forth. See Bharucha (1991) for a further
discussion of the psychological issues involved in the representation of musical
pitch.

The relative importance of the PH, CC and C F components can be varied by
adjusting the diameters of the CC and the CF. For example, if the two circles have
the same diameter, then, in terms of the CC and C F components, the distance
between C and G is the same as the distance between C and B. This is because B

D
ow

nl
oa

de
d

by
 [

N
ew

 Y
or

k
U

ni
ve

rs
ity

]
at

 1
5:

55
 1

7
O

ct
ob

er
 2

01
4

Neural Network Music Composition 259

Table 111. PHCCCF representation for selected pitches

Pitch

C 1
i3 1
G2
C3
M3
E3
A4
C5
Rest

information about the octave; information about the pitch within an octave can be
gleaned from the values on the other dimensions. Consequently, a precise response
of the PH unit is not crucial. Its activity is scaled to range from -9.798 for C1 to
+9.798 for C5. This scaling achieves the desired property previously described that
the distance in the CC or C F component between pitches on opposite sides of the
circle equals the distance between pitches one octave apart in the PH component.'

The PHCCCF representation consists of 13 units altogether. Sample activity
patterns for some pitches are shown in Table 111. Rests (silence) are assigned a
unique code, listed in the last row of the table, that is maximally different from all
pitches. The end of a piece is coded by a series of rests.

As with any distributed representation, there are limitations as to how many and
which pitches can be represented simultaneously. The issue arises because the NND
layer needs to be able to encode a set of alternatives, not just a single pitch. If, say,
Al, 0 2 and E2 are equally likely as the next note, the NND layer must indicate all
three possibilities. T o do so, it must produce an activity vector that is nearer to PA,,
p ~ z and PEZ than to other possibilities. The point in PHCCCF space that is
simultaneously closest to the three pitches is simply the average vector, (PA, + PDZ

+ p~2)/3. Table IV shows the pitches nearest to the average vector. As hoped for,
Al, D2 and E2 are the nearest three. This is not always the case, though. Table V
shows the pitches nearest to the average vector which represents the set {Al, D2,
D#2}. This illustrates the fact that certain clusters of pitches are more compact in
the PHCCCF space than others. The PHCCCF representation not only introduces
a similarity structure over the pitches, but also a limit on the combinations of pitches

Table IV. Distance from representation of
{Al,DZ,E2} to nearest 10 pitches

Rank Pitch Distance

D
ow

nl
oa

de
d

by
 [

N
ew

 Y
or

k
U

ni
ve

rs
ity

]
at

 1
5:

55
 1

7
O

ct
ob

er
 2

01
4

Neural Network Music composition 26 1

Figure 3. The characterization of note durations in terms of twelfths of a beat. The
fractions shown correspond to the duration of a single note of a given type.

result in similar representations for related durations. For example, eighth-notes
and quarter-notes (the former half the duration of the latter) share the same value
on the 114 beat circle; eighth-note triplets and quarter-note triplets share the same
value on the 113 beat circle; and quarter-notes and half-notes share the same values
on both the 114 and 113 beat circles.

This five-dimensional space is encoded directly by five units in CONCERT. It
was not necessary to map the 113 or 114 beat circle into a higher-dimensional binary
space, as was done for the CC and the CF (Table II), because the beat circles are
sparsely populated. Only two or three values need to be distinguished along the x
and ydimensions of each circle, which is well within the capacity of a single unit.

Several alternative approaches to rhythm representation are worthy of mention.
A straightforward approach is to represent time implicitly by presenting each pitch
on the input layer for a number of time steps proportional to the duration. Thus,
a half-note might appear for 24 time steps, a quarter-note for 12, an eighth-note
for 6. Todd (1989) followed an approach of this sort, although he did not quantize
time so finely. He included an additional unit to indicate whether a pitch was
articulated or tied to the previous pitch. This allowed for the distinction between,
say, two successive quarter-notes of the same pitch and a single half-note. The
drawback of this implicit representation of duration is that time must be sliced into

Duration Height 113 Beat Circle 114 Beat Circle

Figure 4. The duration representation used in CONCERT.

D
ow

nl
oa

de
d

by
 [

N
ew

 Y
or

k
U

ni
ve

rs
ity

]
at

 1
5:

55
 1

7
O

ct
ob

er
 2

01
4

Deep Learning – Music Generation – 2019Jean-Pierre Briot

From Neural Networks to Deep Learning

65

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Neural Networks Evolution

66

20202000

Perceptron

20101990198019701960

Perceptrons Backpropagation Pre-Training

20061957 1969 1986 2012

Imagenet

1995

SVM

1997

LSTM

Deep Learning – Music Generation – 2019Jean-Pierre Briot

History: From Perceptron to Artificial Neural Networks
to Deep Learning (1/4)

67

Perceptron
[Rosenblatt 1957]

PDP (Books)
[Rumelhart et al. 1986]

Perceptrons (Book)
[Minsky & Papert 1969]

Linear Separable only
XOR counter example

Multi-layer networks
Backpropagation

0

01

1

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Linear vs Non Linear Decision Boundary

x1

x2

x1

x2

x1

x2

• Argument (XOR) used by [Minsky & Papert 1969] to criticize Perceptrons
[Rosenblatt 1957] (and advocate Symbolic Artificial Intelligence)

• This stopped research on Perceptrons/Neural Networks for a long while
– until Hidden Layers and Backpropagation or/and Kernel Trick (see later)

• Linear

• Non Linear

XOR

68

Deep Learning – Music Generation – 2019Jean-Pierre Briot

History: From Perceptron to Artificial Neural Networks
to Deep Learning (2/4)

69

Pre-Training [Hinton et al. 2006]
Layer-Wise Self-Supervised

Training/Initialization

ImageNet 2012 Image Recognition
Challenge Breakthrough

Difficulty to Efficiently Train
Networks with many Layers

Unstable Gradients

SVM [Vapnik 1963]
SVM + Kernel Trick
[Vapnik et al. 1992]

Nice Model and
Optimized Implementation

Margin Optimization

Deep Learning – Music Generation – 2019Jean-Pierre Briot

History: From Perceptron to Artificial Neural Networks
to Deep Learning (3/4)

70

Convolutional Networks
[Le Cun et al. 1998]

Equivariance (to translation)
& Invariance (to small transformations)

Long Short-Term Memory
(LSTM)

[Hochreiter &
Schmidhüber 1997]

Recurrent Neural Networks (RNN)
(1986)

Temporal Invariance

Gradient Vanishing
or Explosion (1991)

Deep Learning – Music Generation – 2019Jean-Pierre Briot

History: From Perceptron to Artificial Neural Networks
to Deep Learning (4/4)

71

Affordable Efficient
Parallel Processing

(Graphic Cards
GPU)

Massive Data
Available

+
Efficient Implementation

Platforms

+

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Power Increase

• Brute Force

• Hypervitamined Brute Force

Loss Minimization

GPUs

PyTorchTensorFlow 72

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Why Deep ?

73

• More Complex Models
• Learns better Complex Functions
• Hierarchical Features/Abstractions
• No Need for Handcrafted Features

– (Automatically Extracted)

Distributed Representations

End-to-End Architecture

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Why Deep ?

• Theorem [Eldan & Shamir 2016]
– There is a simple radial function on Rd, expressible by a 3-layer net, but

which cannot be approximated by any 2-layer net to more than a constant
accuracy unless its width is exponential on the dimension d

– Depth vs/and Width

74

Radial function = Function whose value at each point
depends only on distance between point and origin

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Very Deep Learning

75

GoogLeNet (2014) ResNet (2015)

(Very) Deep Networks

Upto 152 Layers !

New Techniques (Tricks ?!) e.g.,
Batch Normalization [Ioffe & Szegedy, 2015]

Deep Residual Learning [He et al., 2015]
Replaced Pre-Training (less in vogue)

Deep Learning – Music Generation – 2019Jean-Pierre Briot

The Groundbreaking Start of Deep Learning

76

Pre-Training [Hinton et al. 2006]
Layer-Wise Self-Supervised

Training/Initialization

ImageNet 2012 Image Recognition
Challenge Breakthrough

Deep Learning – Music Generation – 2019Jean-Pierre Briot

WaveNet Audio End-to-End Generation [van den Oord et al., 2017]

• Van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O.,
Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K., WaveNet: A
Generative Model for Raw Audio, arXiv:1609.03499, December 2016.

• Waveform

• End to end architecture

77

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.

1

ar
X

iv
:1

60
9.

03
49

9v
2

 [
cs

.S
D

]
 1

9
Se

p
20

16
0

20

40

60

80

100
No pref.ConcatLSTM

Mandarin ChineseNorth American English

Pr
ef

er
en

ce
 s

co
re

s
(%

)

23.3
13.1

63.6

50.6

33.8

15.6

0

20

40

60

80

100
No pref.WaveNet (L+F)WaveNet (L)

Mandarin ChineseNorth American English

Pr
ef

er
en

ce
 s

co
re

s
(%

)

17.8

44.3
37.9

10.0

64.5

25.5

0

20

40

60

80

100
No pref.WaveNet (L+F)Best baseline

Mandarin ChineseNorth American English

Pr
ef

er
en

ce
 s

co
re

s
(%

)

20.1

49.3

30.6

12.5

29.3

58.2

Figure 5: Subjective preference scores (%) of speech samples between (top) two baselines, (middle)
two WaveNets, and (bottom) the best baseline and WaveNet. Note that LSTM and Concat cor-
respond to LSTM-RNN-based statistical parametric and HMM-driven unit selection concatenative
baseline synthesizers, and WaveNet (L) and WaveNet (L+F) correspond to the WaveNet condi-
tioned on linguistic features only and that conditioned on both linguistic features and logF0 values.

7

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3

[van den Oord, 2016]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

New Architectures

• New Architectures and Mechanisms

• RNN Encoder Decoder

• Variational Autoencoders

• Generative Adversarial Networks

• Transformer

• Attention Mechanism
• …

[Bechberger, 2018]

[O’Reilly Media, 2018]

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

[Vaswani et al., 2017]

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

78

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Artificial Intelligence and Machine Learning

79

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Symbolic vs Connexionist AI – History

[Cardon et al., 2018]
80

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Symbolic vs Cybernetics – History

[Cardon et al. 2018] 81

Cybernetics
Autonomous control
Corrective feedback

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Artificial Intelligence vs Intelligence Augmentation – History

[Cardon et al. 2018]

Mouse
pre-PC
Hypertext

Engelbart’s Augmentation
Research Center

82

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Machine Learning and Artificial Intelligence

• Various Forms of Machine Learning

• Statistical
• Neural Networks, Bayesian Networks, Clustering…

• Decision
• Reinforcement learning

• Symbolic – Learning Concepts from Examples
• Inductive Logic Programming (ILP)

• Learning and Adapting from Cases
• Case-Based Reasoning

83

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Machine Learning and Artificial Intelligence

• Machine Learning is Part of Artificial Intelligence Techniques
But also:
• Reasoning
• Planning
• Knowledge Representation
• User Modeling and Interaction
• Collaboration (Multi-Agent Systems)

• Natural Language Processing
• Dialogue
• Speech Processing

• Decision
• Game Theory
• Optimization
• Robotics

84

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Machine Learning and Artificial Intelligence

• Backfire (Irony) of History
• In 1960, Minsky and Papert founded AI (Artificial

Intelligence) based on Concepts, Symbols, Logic,
Reasoning…, Against Cybernetics (Feedback) and
Connexionism (Neural Networks)

• In 1969, they "Killed" Connexionism/Neural Networks
(Sound Critic of Perceptron)

• In 2006, Start of Deep Learning
• Now, AI is synonym of Deep Learning
• When Actually, Neural Networks are somehow based on

Statistical (Correlation) Brute Force
85

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Terminology

Big Data

Linear Regression

Problem Solving

Reasoning

Search
Planification

Coordination

Human Machine Interaction

Prediction

Classification

Decision

Data Analytics

Data Mining

Statistics

Data Science

Reinforcement Learning

Neural Networks

Bayesian Networks

Deep LearningKnowledge Representation

Adaptation

Pattern Recognition

Visualization

Data Management
and Processing

Clusterization
Machine Learning

Artificial Intelligence Statistical Learning

Logistic Regression

Support Vector Machines

Optimization

Learning

Concept Learning

Case-Based Reasoning
Inductive Logic Programming

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Why Using Computer and Machine Learning
(for Creating Music)?

87

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Why Using Computer for Music

• Bad Reasons (Fears)

– Lead human musicians to unemployment

– Lower the quality of music J

• Good reasons

– Facilitate storing, indexing, delivering and sharing of music (MIDI, MP3, Spotify…)

– New instruments and interaction (Synthesizers, Interactive music performances…)

– New sounds (Synthesizers and Signal processing)

– Analysis tools and algorithms (Spectrum, Patterns Discovery…)

– Initiation and Education (Band in the Box, Garage Band…)

• Production

– Partially automate tasks (Ex: Mixing, etc.)

• Composition, Analysis and Arrangement

– Algorithmic composition

– Harmonization

– Analysis

– …

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Why Using Computer (and Machine Learning) for Music

• Vast Associative Memory

– More systematic than Human memory

• Representation of Musical pieces, Style, Patterns…

• Associations and Correlations

• Knowledge (Theory, Rules, Heuristics…)

• Can Help Human musicians

• Human musicians rarely compose from scratch – They borrow from others

– Consciously

» Plagiat, Citation…

– Unconsciously

» Influence

– Recombinations

– Historical Evolution/Extension

» Modal monophonic -> Polyphonic (Counterpoint) -> Tonal Music (Harmony) -> Extended
Harmony (Debussy, Jazz…)

– Ruptures (Dodecaphonism, Free Jazz, Punk…)

» Rare and often transient

89

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Some Preconcepts Against Deep Learning / AI

• No Emotion
– Create Emotion to the Human Target ?
– Or/And Internal Model of Emotion ?

• No Creativity
– Exploratory

» AlphaZero used successful strategies yet unconsidered
– Recombination

» Concept and Conjecture Discovery (ex: Numbers, Prime Numbers,
Prime Numbers Decomposition) AM and Eurisko [Lenat, 1976; 1983]

» Style Transfer [Gatys et al., 2015]
– Paradigm Reformulation

» Ex: Quantum Physics, Algebraic Geometry, Dodecaphonism…
» More difficult

[Image: BBC]

[Bryson et al., 2004]

[Karras et al., 2018]

+ =

90

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Handcrafted vs Learnt Models

• Handcrafted

– Tedious

– Error-Prone

• Automatically Learnt (Induction)

– Markov Models

– Neural Models

• Style Automatic Learned from a Corpus (Composer, Form, Genre…)

– Melody

– Harmony

– Counterpoint

– Orchestration

– Production

• Machine Learning Techniques

– Neural Networks, Deep Learning, Reinforcement Learning

– (and other models/techniques, Ex: Markov Models)

91

Flow Machines [Pachet et al. 2012]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Deep Learning Phylogenetics

Feedforward

Autoencoder (AE)

Recurrent (RNN)

Generative Adversarial Networks (GAN)

Long Short-Term Memory (LSTM)

Variational Autoencoder (VAE)

RNN Encoder Decoder

Creative Adversarial Networks (CAN)

Transformer

Reinforcement Learning

Convolutional

Deep Reinforcement Learning

RL-Tuner

Music VAE

Music Transformer

DeepHear

Restricted Boltzmann Machine (RBM) RNN-RBM

VRAE

C-RBM

92

MidiNet

Performance RNN

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Deep Learning Phylogenetics

Generative Adversarial Networks (GAN)

Variational Autoencoder (VAE)

93

Generative Architectures

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Self-References for More Information

94

J.-P. Briot, G. Hadjeres, F.-D. Pachet, Deep Learning
Techniques for Music Generation, Computational Synthesis
and Creative Systems Series, Springer, 2019.
https://www.springer.com/br/book/9783319701622

ArXiv version:
https://arxiv.org/abs/1709.01620

UNIRIO Course:
http://www-desir.lip6.fr/~briot/cours/unirio3/

https://www.springer.com/br/book/9783319701622
https://arxiv.org/abs/1709.01620
http://www-desir.lip6.fr/~briot/cours/unirio3/

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Survey/Analysis

95

Architecture

Representation

Strategy

Objective

4+1 dimensions

Challenge

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Objective

96

• Melody
– Monodic
– Polyphonic

• Polyphony (Multiple Voices/Tracks)

• Accompaniment
– Counterpoint

» Melody
» Melodies (Chorale)

– Chords

• Melody + Harmony/Chords

• Leadsheet

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Representation

97

• Signal
– Waveform

– Spectrum

• Symbolic
– MIDI
– Piano roll

– Text

– Chord EbMaj7/G

– Lead sheet
– Rhythm

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Architecture

98

• Feedforward

• Recurrent (RNN)
– Long Short-Term Memory (LSTM)

• Autoencoder
– Stacked Autoencoders

• Restricted Boltzmann Machine (RBM)

• Variational Autoencoder (VAE)

• Patterns
– Convolutional
– Conditioning
– Generative Adversarial Networks (GAN)

• Reinforcement Learning

• Refinement and Compound
– Ex: VRAE = Variational(Autoencoder(RNN, RNN) = Variational(RNN Encoder-

Decoder)

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Refined and Compound Architectures

99

• Composition
– Bidirectional RNN
– RNN-RBM

• Refinement
– Variational(Autoencoder) (VAE)

• Nested
– Stacked Autoencoder
– RNN Encoder-Decoder = Autoencoder(RNN, RNN)

• Pattern Instantiation
– C-RBM = Convolutional(RBM)
– C-RNN-GAN = GAN(RNN, RNN)

• Compound
– VRASH = Variational(Autoencoder(RNN, Conditioning(RNN, History))).

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Challenge

100

1. Ex Nihilo Generation
» vs Accompaniment (Need for Input)

2. Length Variability
» vs Fixed Length

3. Content Variability
» vs Determinism

4. Control
» ex: Tonality conformance, Maximum number of repeated notes…

5. Structure
6. Originality

» vs Conformance

7. Incrementality
» vs Single-step or Iterative Generation

8. Interactivity
» vs (Autistic) Automation

9. Explainability

Deep Learning – Music Generation – 2019Jean-Pierre Briot

(Generation) Strategy

101

• Feedforward
– Single-Step Feedforward
– Iterative Feedforward
– Decoder Feedforward

• Conditioning

• Sampling

• Input Manipulation

• Adversarial

• Reinforcement

• Unit Selection [Bretan et al., 2016][Jaques et al., 2016]

[Mogren, 2016]

[Boulanger-Lewandowski et al., 2012]

[Yang et al., 2017]

[Sun, 2016]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Generative Architectures

102

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Variational Autoencoder

103

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Autoencoder

• Symmetric Neural Network
• Trained with examples as input and output
• Hidden Layer will Learn a Compressed Representation at the Hidden

Layer (Latent Variables)

104
Latent Variables
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Variational Autoencoder (VAE) [Kingman & Welling, 2014]

105

• Additional Constraint:
• Encoded representation (latent variables z) follows some prior probability

distribution p(z), usually, a Gaussian distribution (normal law)

• Reparameterization Trick

• The VAE decoder part will learn the relation between a Gaussian distribution

of the latent variables and the learnt examples

• A VAE is able to learn a smooth latent space mapping to realistic examples

In order to optimize the KL divergence, we need to apply a

simple reparameterization trick: instead of the encoder

generating a vector of real values, it will generate a vector of

means and a vector of standard deviations.

This lets us calculate KL divergence as follows:

When we're calculating loss for the decoder network, we can

just sample from the standard deviations and add the mean,

and use that as our latent vector:

latent_loss	=	KL-Divergence(latent_variable,	unit_gaussian)		
loss	=	generation_loss	+	latent_loss		

#	z_mean	and	z_stddev	are	two	vectors	generated	by	encoder	network
latent_loss	=	0.5	*	tf.reduce_sum(tf.square(z_mean)	+	tf.square

samples	=	tf.random_normal([batchsize,n_z],0,1,dtype=tf.float32
sampled_z	=	z_mean	+	(z_stddev	*	samples)		

[Frans, 2016]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Representation/Manifold Learning

3D Earth 2D Map
106

CHAPTER 5. MACHINE LEARNING BASICS

5.11.3 Manifold Learning

AG BFIHKMaGM <HG<>IM NG=>KERBG@ FaGR B=>aL BG Fa<ABG> E>aKGBG@ BL MAaM H? a

FaGB?HE=.

A manifold BL a <HGG><M>=�K>@BHG. MaMA>FaMB<aEER,�BM�BL a L>M H? IHBGML,
aLLH<BaM>= PBMA a G>B@A;HKAHH= aKHNG= >a<A IHBGM. FKHF aGR @BO>G IHBGM, MA>
FaGB?HE= EH<aEER aII>aKL MH ;> a EN<EB=>aG LIa<>. IG >O>KR=aR EB?>, P> >QI>KB>G<>
MA> LNK?a<> H? MA> PHKE= aL a 2-D IEaG>, ;NM BM BL BG ?a<M a LIA>KB<aE FaGB?HE= BG
3-D LIa<>.

TA> =>rGBMBHG H? a G>B@A;HKAHH= LNKKHNG=BG@ >a<A IHBGM BFIEB>L MA> >QBLM>G<>
H? MKaGL?HKFaMBHGL MAaM <aG ;> aIIEB>= MH FHO> HG MA> FaGB?HE= ?KHF HG> IHLBMBHG
MH a G>B@A;HKBG@ HG>. IG MA> >QaFIE> H? MA> PHKE=nL LNK?a<> aL a FaGB?HE=, HG> <aG
PaED GHKMA, LHNMA, >aLM, HK P>LM.

AEMAHN@A MA>K> BL a ?HKFaE FaMA>FaMB<aE F>aGBG@ MH MA> M>KF oFaGB?HE=,p BG

Fa<ABG> E>aKGBG@ BM M>G=L MH ;> NL>= FHK> EHHL>ER MH =>LB@GaM> a <HGG><M>= L>M
H? IHBGML MAaM <aG ;> aIIKHQBFaM>= P>EE ;R <HGLB=>KBG@ HGER a LFaEE GNF;>K H?
=>@K>>L H? ?K>>=HF, HK =BF>GLBHGL, >F;>==>= BG a AB@A>K-=BF>GLBHGaE LIa<>. Ea<A
=BF>GLBHG <HKK>LIHG=L MH a EH<aE =BK><MBHG H? OaKBaMBHG. S>> r@NK> ?HK aG5.11
>QaFIE> H? MKaBGBG@ =aMa ERBG@ G>aK a HG>-=BF>GLBHGaE FaGB?HE= >F;>==>= BG MPH-
=BF>GLBHGaE LIa<>. IG MA> <HGM>QM H? Fa<ABG> E>aKGBG@, P> aEEHP MA> =BF>GLBHGaEBMR
H? MA> FaGB?HE= MH OaKR ?KHF HG> IHBGM MH aGHMA>K.�TABL H?M>G AaII>GL PA>G a
FaGB?HE= BGM>KL><ML BML>E?. FHK >QaFIE>, a r@NK> >B@AM BL a FaGB?HE= MAaM AaL a LBG@E>
=BF>GLBHG BG FHLM IEa<>L ;NM MPH =BF>GLBHGL aM MA> BGM>KL><MBHG aM MA> <>GM>K.

0 � 1 0 1 � 2 0 2 � 3 0 3 � � 0.
−1 0.

−0 �.

0 0.

0 �.

1 0.

1 �.

2 0.

2 �.

F?gKHe 5.11: DaJa IaCFBed fHEC a d?IJH?bKJ?ED ?D a JME-d?CeDI?EDaB IFace J>aJ ?I acJKaBBO
cEDceDJHaJed DeaH a EDe-d?CeDI?EDaB CaD?fEBd, B?Ae a JM?IJed IJH?Dg. T>e IEB?d B?De ?Dd?caJeI
J>e KDdeHBO?Dg CaD?fEBd J>aJ J>e BeaHDeH I>EKBd ?DfeH.

161

Manifold :
Set of connected points

But can be approximated by
a smaller number of dimensions,
each dimension corresponding

to a local variation

In a high-dimensional space

Analogy:

Deep Learning – Music Generation – 2019Jean-Pierre Briot

VAE MNIST [Keras/Cholet, 2016]

107
Label = (z1, z2)

digit1

digit2

784
512

2

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Variational Autoencoder

108

[Dykeman, 2016]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Variational Autoencoder

109

Generation
by Exploring the Latent Space
and Decoding

[Dykeman, 2016]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

VAE MNIST [Keras/Cholet, 2016]

110

16/04/2019 Building Autoencoders in Keras

https://blog.keras.io/building-autoencoders-in-keras.html 14/14

That�s it� If 4ou have suggestions for more topics to be covered in this post ¢or in future posts£� 4ou
can contact me on T2itter at ²fchollet�

References

¤}¥ Wh4 does unsupervised pre�training help deep learning�

¤~¥ Batch normali5ation� Accelerating deep net2ork training b4 reducing internal covariate shix�

¤�¥ Deep Residual Learning for Image Recognition

¤�¥ Auto�Encoding Variational Ba4es

Po2ered b4 pelican� 2hich takes great advantages of p4thon�

z1

z2

[Cholet, 2016]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

VAE Magic

111

Label = (z1, z2)

digit1

digit2

784

512

2

How is it possible ?
Compress 784 variables into 2
and reconstruct the original ?

Deep Learning – Music Generation – 2019Jean-Pierre Briot

VAE Magic Revealed

112

Weights

Input Layer Output LayerHidden Layer
Latent Variables

Deep Learning – Music Generation – 2019Jean-Pierre Briot

VAE Magic Revealed

113

Weights

Input Layer Output LayerHidden Layer
Latent Variables

Split/Extract between

• Common Data:
Weights

• Variable/Discriminative Data:
Latent Variables

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Variational Generation

114

Exploration of the latent space with various operations to control/vary the
generation of content

Ex:
• Translation
• Arbitrary path
• Interpolation (morphing) (between points)
• Averaging (of some points)
• Attribute arithmetic

– Addition or subtraction of an attribute vector capturing a given characteristic
– This attribute vector is computed as the average latent vector for a collection of

examples sharing that attribute (characteristic)

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Attribute Arithmetic

115

• (Characteristics) Attribute Arithmetic

– Addition or subtraction of an attribute vector capturing a given characteristic

– This attribute vector is computed as the average latent vector for a collection of examples

sharing that attribute (characteristic)

• Select a set of round and angular digits images

– round_numbers = [3, 6, 8, 9]

– angular_numbers = [1, 4, 7]

• Encode each one

– _, _, z_round_elements = encoder.predict(np.array(round_elements))

– _, _, z_angular_elements = encoder.predict(np.array(angular_elements))

• Compute the mean of the (z) corresponding latent variable values

– z1_mean_round_elements = mean(z1_round_elements)

– z1_mean_angular_elements = mean(z1_angular_elements)

– …

• Do attribute arithmetic

– def roundify(z):

– z_rounded = [z[0] + z1_mean_round_elements, z[1] + z2_mean_round_elements]

– return(decoder.predict(np.array([z_rounded]))[0])

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Examples

116

Roundify

Angularify

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Variational Autoencoder
Ex. of Attribute Arithmetic

117[Li et al., 2016]

Attribute
Initial Image

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Bach Choral Soprano Melodies
Z1 Step Interpolation

118z1

P1

P2

P3

P4

z2

P1 P2 P3 P4

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Bach Choral Soprano Melodies
Z2 Step Interpolation

119z1

P1

P2

P3

P4

z2

P1

P2

P3

P4

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Celtic Music

• Training Examples/Corpus:
• In ABC format (see later) -> Music21 -> representation
• 29 songs from the Session (https://thesession.org/)
• In the same key (D major) and the same rhythm metric (4/4)

120

https://thesession.org/

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Celtic Melodies
Z1 Step Interpolation

121

P0

P1

P3

P2

P4

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Celtic Melodies
Z2 Step Interpolation

122

P1

P2

P3

P4

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Disentanglement (1/3)

123

id 1

id 3

id 2

Female, blonde,
smiling…

Male, black hair,
not smiling…

Female, brown hair,
bangs, smiling…

D(,) =

D(,) =
id 4

Male, black hair,
glasses, beard…

D(,) =

D(,) =

Disentangling Image editingLatent representations of
information domains

D(,) =

D(,) =

D(,) =

D(,) =

D(,) =

D(,) =

glasses

female

male

no glasses

Id
en

ti
ty

h y
A

tt
ri

bu
te

s
h z

E
nc

od
er

D
ec

od
er

!""

…

Figure 1: Overview of our DualDis framework. On the left we illustrate the behavior of our encoder-
decoder, learned to explicitly separate complementary representations of identity (top) and attributes
(bottom) in dual latent subspaces. In the middle, we illustrate its disentangling ability by being able
to mix the identity of a first image and the attributes of a second. In the first example, the green man
takes the attributes of the yellow image, becoming a smiling woman with brown bangs. As our model
also linearizes the factors of variation, one can perform image editing (right). For the first example
(blue woman), we move the representation 6 along the directions male (first line) and glasses (second
line) to add those attributes.

by classification losses. A decoder D(hy,hz) is used to reconstruct images and generate new ones.
Our main contribution is the learning strategy that we propose to train this architecture. Using
adversarial training, we are able to explicitly separate and “orthogonalizes” the information from the
two information domains. To achieve this, each latent space is connected to a classifier of the opposite
information domain, so that this classifier finds the information that belongs to the wrong domain.
The encoder will then learn to remove this information from the latent space, making classification
impossible and thus filtering only the relevant information. Our approach is called DualDis to
highlight our two branch disentangling process. It is illustrated in Fig. 1 (middle, “disentangling”)
where it is possible to mix representations of different images. We study the disentangling capabilities
of our model on CelebA [32], Yale-B [13] and NORB [29] by comparing our model quantitatively
to state-of-the-art models by measuring both the accuracy of the models for identity and attributes
classification and their ability to disentangle the two information domains.

In addition, our architecture is also designed to linearize the factors of variation in each latent space, a
behavior that reinforces the semantic quality of the representation and is necessary for effective image
generation and editing. This is ensured through linear classifiers that both guide the linearization
process and provide us with linear directions to semantically navigate the latent spaces. Thanks to
this, we are able to modify the information represented by our latent variables that has been extracted
from any given image and perform image editing. For example on Fig. 1 (right), we change the gender
and eyeglasses attributes of images while conserving the identity and the other attributes. Thanks to
this, we perform guided data augmentation by generating variations of images with semantic changes
instead of low-level changes (flip, translation, color jitter, etc.) as usually done. We leverage this
capability to significantly improve identity classification performance on the Yale-B face dataset.

2 DualDis approach

We propose an approach called DualDis presented on Fig. 2. On the left, we show the architectural
part of our contribution, using disentangling to separate two information domains (class/identity and
attributes). Those domains have classification labels y and z that we want to predict (ŷ, ẑ), along
with a reconstruction x̂ of the input x. In the center of the figure, we describe the second part of
our approach which is the training process designed to successfully disentangle the two domains,
using adversarial classifiers and multiple loss terms. On the right, to put our model in perspective,

2

[Robert el al, 2019]

• z1 z2

• Ex: Pitch Range Duration Range

• Ex: Gender Glasses

…

…

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Disentanglement (2/3)

• Adding Term to the Reconstruction Loss [IBM Research, 2018]

• Deconstructing the β-VAE [Mathieu et al., 2019]

• Reconstruction Trade-off via Jacobian Supervision [Lezama, 2019]

Published as a conference paper at ICLR 2019

Table 1: Quantitative comparison of the disentanglement and reconstruction performance of the
unsupervised method on MNIST digits.

Model d successful class swaps reconstruction MSE
Teacher 0 94.3% 0.036
Student with Jacobian supervision 14 61.7% 0.014
Student with Jacobian supervision 18 52.1% 0.012
Student without Jacobian supervision 14 32.6% 0.011
Random weights 14 9.8% 0.116

\�

V�('[�
��\���

(\�
' (\�

]�

[�

[�

Figure 3: Diagram of the proposed training procedure for facial attributes disentangling. E and D
always denote the same encoder and decoder module, respectively. Images x1 and x2 are randomly
sampled and do not need to share any attribute or class. Their ground truth attribute labels are ȳ1 and
ȳ2 respectively. The latent code is split into a vector predicting the attributes y and an unspecified
part z. Shaded E indicates its weights are frozen, i.e., any loss over the indicated output does not
affect its weights.

in Section 3. In this more challenging case, the disentangling will be first learned by a teacher au-
toencoder using available annotations and an original training procedure. After a teacher is trained
to correctly disentangle and control said attributes, a student model will be trained to improve the
visual quality of the reconstruction, while maintaining the attribute manipulation ability.

4.1 MODEL ARCHITECTURE AND LOSS FUNCTION

We begin by training a teacher model for effective disentangling at the cost of low quality reconstruc-
tion. Figure 3 shows a diagram of the training architecture for the teacher model. Let x 2 RH⇥W⇥3

be an image with annotated ground truth binary attributes ȳ 2 {�1, 1}k, where k is the number of
attributes for which annotations are available. Our goal is to learn the parameters of the encoder
ET : RH⇥W⇥3 ! Rk+d and the decoder DT : Rk+d ! RH⇥W⇥3 such that ET (x) = (y, z) and
DT (y, z) = x̂ ⇡ x (Figure 3, top). Ideally, y 2 Rk should encode the specified attributes of x,
while z 2 Rd should encode the remaining information necessary for reconstruction.

The training of the teacher is divided into two steps. First, the autoencoder reconstructs the input
x, while at the same time predicting in y the ground truth labels for the attributes ȳ. Second, the
attributes part of the latent code y is swapped with that of another training sample (Figure 3, bottom).
The randomly fabricated latent code is fed into the decoder to produce a new image. Typically, this
combination of factors and nuisance variables is not represented in the training set, so evaluating
the reconstruction is not possible. Instead, we use the same encoder to assess the new image: If the
disentangling is achieved, the part of the latent code that is not related to the attributes should be
the same for the existing and fabricated images, and the predicted factors should match those of the
sample from which they were copied.

In what follows, we describe step by step the loss function used for training, which consists of the
sum of multiple loss terms. Note that, contrary to relevant recent methods (Mathieu et al., 2016;
Lample et al., 2017; Szabó et al., 2017), the proposed method does not require adversarial training.

Reconstruction loss. The first task of the autoencoder is to reconstruct the input image. The first
term of the loss is given by the L2 reconstruction loss, as in (8).

6

02/11/2019 DLVHQWDQJOHPHQW RI LDWHQW FDFWRUV RI VDULDWLRQ ZLWK DHHS LHDUQLQJ

KWWSV://ZZZ.LEP.FRP/EORJV/UHVHDUFK/2018/05/GLVHQWDQJOHPHQW-GHHS-OHDUQLQJ/ 3/9

&i
p�

&ig��e >N

7e adopted a simple yet effective approach of matching the moments of the two distributionsN Ma
distributions will amount to decorrelating the dimensions of the inferred priorN 7e call this modi®e
Inferred 0riorI6AEX or DI0I6AEN

A new metric for measuring disentangle
7e also proposed a new metric to evaluate the degree of disentanglementQ assuming that the
ground truth values of the attributes to disentangle are knownN 7e referred to this as a
3eparated Attribute 0redictability c3A0d scoreN 7e found this score to have good alignment
with qualitative disentanglement observed in the decoderVs output while doing latent
traversalsN 4o compute 3A0Q we ®rst constructed a dʑ� k score matrix 3 cfor d latents and k
generative factorsd whose ij entry is the linear regression or classi®cation score cdepending
on the generative factor typed of predicting j factor using only i latent cFigure ?dN

For each column of the score matrix which corresponds to a generative factorQ we calculated
the difference of the top two entries ccorresponding to the top two most predictive latent
dimensionsd and then calculated the mean of these differences as the ®nal 3A0 scoreN A high
3A0 score indicates that each generative factor is primarily captured in only one latent
dimensionN 7e also observe that 3A0 score is aligned well with the disentanglement in the
generated images by the decoderN Figure @ qualitatively shows the mapping of a selected few
latents to real world concepts for CelebA face images e?fN

th

th th

02/11/2019 DLVHQWaQJOHPHQW RI LaWHQW FaFWRUV RI VaULaWLRQ ZLWK DHHS LHaUQLQJ

KWWSV://ZZZ.LEP.FRP/EORJV/UHVHaUFK/2018/05/GLVHQWaQJOHPHQW-GHHS-OHaUQLQJ/ 2/9

6AE starts with a generative model of the data which samples latents from a prior pc dQ followed b
p cxn d cwhere θ are the parameters of the generator or decoderdN 4he problem of inference is to co
conditioned on the observation xP

6AE achieves this by learning an approximation of a recognition modelQ parameterized by ϕQ that en
observations to the approximate posteriorsN 4he recognition model parameters are learned by opti

where the outer expectation is over the true data distribution pcxd from which we have samplesN 4h
maximizing what is referred as evidence lower bound cE,B/dP

7here 6AE falls short
For inferring disentangled factorsQ inferred prior or expected variational posteriorQ q c d � �q c │xdp
its dimensionsN 4his can be achieved by minimizing a suitable distance between the inferred prior q
generative prior pc dN 7e can also de®ne expected posterior as p c d � �p c │xdpcxddxN If we take +
distanceQ by relying on its pairwise convexityQ it can be shown that this distance is bounded by E,B
inferenceN

4his is the reason that the original 6AE has also been observed to exhibit some disentangling beha
-.I34N HoweverQ this behavior does not carry over to more complex datasetsQ unless extra supervi
providedN 4his can be due toP cid true data distribution pcxd and modeled data distribution p cxd � �p
in turn causes pc d andʑp c d to be farR and ciid the nonIconvexity of the E,B/ objectiveQ which preve
minimumN

-atching the distributions to get disent
4o explicitly encourage disentanglement during inferenceQ we added $cq c Qpc ddʑto the model as p

θ

ϕ ϕ

θ θ

θ

θ

ϕ

124

Disentangling Disentanglement in Variational Autoencoders

Figure 2. Reconstruction loss vs disentanglement metric of Kim and Mnih (2018). [Left] Using an anisotropic Gaussian with diagonal
covariance either learned, or fixed to principal-component values of the dataset. Point labels represent different values of �. [Right]
Using p⌫(z)=

Q
dSTUDENT-T(zd; ⌫) for different ⌫ with � = 1. Note the different x-axis scaling. Shaded areas represent ±2 standard

errors for estimated mean disentanglement calculated using 100 separately trained networks. We thus see that the variability on the
disentanglement metric is very large, presumably because of stochasticity in whether learned dimensions correspond to true generative
factors. The variability in the reconstruction was only negligible and so is not shown. See Appendix B for full experimental details.

� = 0.01 � = 0.5 � = 1.0 � = 1.2

↵
=

0
�
=

0

↵ = 1 ↵ = 3 ↵ = 5 ↵ = 8

Figure 3. Density of aggregate posterior q�(z) with different ↵, �
for spirals dataset with a mixture of Gaussian prior.

butions (see Appendix B for details).

We measure a representation’s sparsity using the Hoyer
extrinsic metric (Hurley and Rickard, 2008). For y 2 Rd,

Hoyer (y) =
p
d� kyk1/kyk2p

d� 1
2 [0, 1],

yielding 0 for a fully dense vector and 1 for a fully sparse
vector. Rather than employing this metric directly to the
mean encoding of each datapoint, we first normalise each
dimension to have a standard deviation of 1 under its aggre-
gate distribution, i.e. we use z̄d = zd/�(zd) where �(zd) is
the standard deviation of dimension d of the latent encoding
taken over the dataset. This normalisation is important as
one could achieve a “sparse” representation simply by hav-
ing different dimensions vary along different length scales
(something the �-VAE encourages through its pruning of
dimensions (Stühmer et al., 2019)), whereas we desire a rep-
resentation where different datapoints “activate” different
features. We then compute overall sparsity by averaging
over the dataset as Sparsity = 1

n

P
n

i
Hoyer (z̄i). Figure 4

(left) shows that substantial sparsity can be gained by replac-
ing a Gaussian prior (� = 0) by a sparse prior (� = 0.8).
It further shows substantial gains from the inclusion of the
aggregate posterior regularization, with ↵ = 0 giving far
low sparsity than ↵ > 0, when using our sparse prior. The
use of our sparse prior did not generally harm the recon-
struction compared. Large values of ↵ did slightly worsen
the reconstruction, but this drop-off was much slower than
increases in � (note that ↵ is increased to much higher levels
than �). Interestingly, we see that � being either too low or
too high also harmed the sparsity.

We explore the qualitative effects of sparsity in Figure 5, us-
ing a network trained with ↵ = 1000,� = 1, and � = 0.8,
corresponding to one of the models in Figure 4 (left). The
top plot shows the average encoding magnitude for data
corresponding to 3 of the 10 classes in the Fashion-MNIST
dataset. It clearly shows that the different classes (trousers,
dress, and shirt) predominantly encode information along
different sets of dimensions, as expected for sparse represen-
tations (c.f. Appendix B for plots for all classes). For each
of these classes, we explore the latent space along a partic-
ular ‘active’ dimension—one with high average encoding
magnitude—to observe if they capture meaningful features
in the image. We first identify a suitable ‘active’ dimen-
sion for a given instance (top row) from the dimension-wise
magnitudes of its encoding, by choosing one, say d, where
the magnitude far exceeds �2

0 . Given encoding value zd,
we then interpolate along this dimension (keeping all others
fixed) in the range (zd, zd + sign(zd)); the sign of zd indi-
cating the direction of interpolation. Exploring the latent
space in such a manner demonstrates a variety of consistent
feature transformations in the image, both within class (a,
b, c), and across classes (d), indicating that these sparse
dimensions do capture meaningful features in the image.

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Disentanglement (3/3)

• Dual Branch Adversarial (DualDIS) [Robert el al, 2019]

• Separate Dimensions in Distinct Autoencoders (Ey and Ez)

• Measure the Presence/Absence of the Dual Dimension through a Dual

(Adversarial) Classifier (Cz and Cy)

• Objective(s): Not Being Able to Classify Properly the Dual Dimension

125

Adv. classifiers Main loss Discr.
loss

Attributes branch

Identity branch

x

hy

hz

Ey

Ez

DE

ℒ"

ℒ#

Wy

Wz
$%&'(ℒ&'(,"

ℒ&'(,#$*&'(Cz

Cy

ℒ+,-h

E… C

ℒ'./-,"

ℒ'./-,#

$0

$%

$*

Architecture Training

UAI

Hyb
rid

Net
M

TA
N

Our
s

Adv
. o

n
y

M
ul

ti-
tas

k

Active

U

U

U

U

UActive in UAI variant
(Cy/z replaced by Uy/z)

Baselines

Loss propagated to

Figure 2: Architecture and learning of the DualDis framework. We use a two-branch encoder-
decoder architecture with classifiers (left). For the training, in addition to classical reconstruction and
classification losses, we use adversarial classifiers and loss terms to force the two latent spaces to
encode complementary “orthogonal” information (middle). We also indicate (right) how subsets of
components of DualDis can be used to reproduce existing baselines described in Sec. 3.

we indicate how some related works can be reproduced using the same kind of architectures with
variations in the losses used.

2.1 Dual branch Auto-Encoder

We propose an encoder-decoder architecture with a latent space split in two parts, hy and hz . Each
representation is produced by a deep encoder Ey or Ez so that the features are explicitly separated.
These representations are concatenated into h and fed to a decoder D, producing a reconstruction x̂.
Having a decoder enables image generation and ensures that the model extracts robust features [28].

While it would be possible to encode all the information in a single latent space, having two branches
encourages the model to encode two complementary kinds of information [34, 15, 30]. Taking the
example of a face dataset, we want the identity branch (Ey � E) to capture information related to
the identity y with invariance toward other factors of variation (hair style, makeup, pose, etc.); and
we want the attribute branch (Ez � E) to model this ignored information, since this branch needs
to capture factors of variation linked to visual attributes z. Having two separate deep encoders Ey

and Ez is key to an effective disentangling, and they should be designed deep enough to produce
“orthogonal” latent representations that encode very different information. Since the low-level features
represented by the first convolutional layers are likely common to both domains, we use a single
common encoder E before specializing the information in our two branches.

This auto-encoding backbone is trained using a simple mean-squared error, Lrec = ||x � x̂||22. A
visual GAN discriminator [14] or a perceptual loss [8] could improve the quality of the generations
but this was not used since it is out of the scope of our paper.

2.2 Modeling factors of variation

We want our architecture to produce robust representations of each information domain as well as
provide classification predictions. First, we can note that having a two-branch encoder was shown to
improve classification performance [37] by encouraging representations hy and hz to be invariant
toward intra-class variations. To the encoder, we add linear classifiers Wy and Wz , one for each
branch, that predict respectively ŷ and ẑ. These classifiers guide the auto-encoding backbone to
organize the information extracted for reconstruction in the right branch between our two latent
spaces hy and hz so that it allows to predict the class/identity and the attributes. To train those

3

[Robert el al, 2019]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Implicit vs Explicit Dimensions (Disentanglement)

• Dimensions (ex: Pitch Range, Duration Range…) are
« Chosen » by the Architecture

• But we can also Configure/Train the Architecture in order to
« Force » some Dimensions

126

Rest
x x x

x

(Melody & Chords

Rhythm
rhythm(x)

Encoder Decoder Encoder Decoders

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Ex: EC2-VAE [Yang et al., 2019]

127

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Examples EC2-VAE [Yang et al., 2019]

128

4.2 Examples of Generation via Analogy

We present several representative “what if” examples by
swapping or interpolating the latent representations of dif-
ferent pieces. Throughout this section, we use the follow-
ing example (shown in Figure 4), an 8-beat melody from
the Nottingham Dataset [10] as the source, and the tar-
get rhythm or pitch will be borrowed from other pieces.
(MIDI demos are available at https://github.com/
cdyrhjohn/Deep-Music-Analogy-Demos.)

Figure 4: The source melody.

4.2.1 Analogy by replacing zp

Two examples are presented. In both cases, the latent
pitch representation and the chord condition of the source
melody are replaced with new ones from other pieces.
In other words, the model answers the analogy question:
“source’s pitch : source melody :: target’s pitch : ?”

Figure 5 shows the first example, where Figure 5(a)
shows the piece from which the pitch and chords are bor-
rowed, and Figure 5(b) shows the generated melody. From
Figure 5(a), we see the target melody is in a different key
(D major) with a larger pitch range than the source and
a big pitch jump in the beginning. From Figure 5(b), we
see the generated new melody captures such pitch features
while keeping the rhythm of the source unchanged.

(a) Target’s pitch and chord.

(b) The generated target music, using the pitch and chord from
(a) and the rhythm from the source.

Figure 5: The 1st example of analogy via replacing zp.

(a) Target’s pitch and chord.

(b) The generated target, using the pitch and chord from (a) and
the rhythm from the source.

Figure 6: The 2nd analogy example via replacing zp.

Figure 6 shows another example, whose subplots share
the same meanings with the previous one. From Figure
6(a), we see the first measure of the target’s melody is a
broken chord of Gmaj, while the second measure is the G
major scale. From Figure 6(b), we see the generated new
melody captures these pitch features. Moreover, it retains

the source’s rhythm and ignores the dotted eighth and six-
teenth notes in Figure 6(a).

4.2.2 Analogy by replacing zr

Similar to the previous section, this section shows two ex-
ample answers to the question: “source’s rhythm : source
melody :: target’s rhythm : ?” by replacing zr. Figure
7 shows the first example, where Figure 7(a) contains the
new rhythm pattern quite different from the source, and
Figure 7(b) is the generated target. We see that Figure 7(b)
perfectly inherited the new rhythm pattern and made minor
but novel modifications based on the source’s pitch.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 7: The 1st example of analogy via replacing zr.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 8: The 2nd analogy example via replacing zr.

Figure 8 shows a more extreme case, in which Figure
8(a) contains only 16th notes of the same pitch. Again,
we see the generated target in Figure 8(b) maintains the
source’s pitch contour while matching the given rhythm
pattern.

4.2.3 Analogy by Replacing Chord

(a) Changing all the chords down a semitone, resulting in the
key change from G major to Bb minor.

(b) Changing the key from G major to G minor.

Figure 9: Two examples of replacing the original chord.

Though chord is not our main focus, here we show
two analogy examples in Figure 9 to answer “what if” the
source melody is composed using some other chord pro-
gressions. Figure 9(a) shows an example where the key is
Bb minor. An interesting observation is the new melody

Original Melody A

Rythm Reference B

4.2 Examples of Generation via Analogy

We present several representative “what if” examples by
swapping or interpolating the latent representations of dif-
ferent pieces. Throughout this section, we use the follow-
ing example (shown in Figure 4), an 8-beat melody from
the Nottingham Dataset [10] as the source, and the tar-
get rhythm or pitch will be borrowed from other pieces.
(MIDI demos are available at https://github.com/
cdyrhjohn/Deep-Music-Analogy-Demos.)

Figure 4: The source melody.

4.2.1 Analogy by replacing zp

Two examples are presented. In both cases, the latent
pitch representation and the chord condition of the source
melody are replaced with new ones from other pieces.
In other words, the model answers the analogy question:
“source’s pitch : source melody :: target’s pitch : ?”

Figure 5 shows the first example, where Figure 5(a)
shows the piece from which the pitch and chords are bor-
rowed, and Figure 5(b) shows the generated melody. From
Figure 5(a), we see the target melody is in a different key
(D major) with a larger pitch range than the source and
a big pitch jump in the beginning. From Figure 5(b), we
see the generated new melody captures such pitch features
while keeping the rhythm of the source unchanged.

(a) Target’s pitch and chord.

(b) The generated target music, using the pitch and chord from
(a) and the rhythm from the source.

Figure 5: The 1st example of analogy via replacing zp.

(a) Target’s pitch and chord.

(b) The generated target, using the pitch and chord from (a) and
the rhythm from the source.

Figure 6: The 2nd analogy example via replacing zp.

Figure 6 shows another example, whose subplots share
the same meanings with the previous one. From Figure
6(a), we see the first measure of the target’s melody is a
broken chord of Gmaj, while the second measure is the G
major scale. From Figure 6(b), we see the generated new
melody captures these pitch features. Moreover, it retains

the source’s rhythm and ignores the dotted eighth and six-
teenth notes in Figure 6(a).

4.2.2 Analogy by replacing zr

Similar to the previous section, this section shows two ex-
ample answers to the question: “source’s rhythm : source
melody :: target’s rhythm : ?” by replacing zr. Figure
7 shows the first example, where Figure 7(a) contains the
new rhythm pattern quite different from the source, and
Figure 7(b) is the generated target. We see that Figure 7(b)
perfectly inherited the new rhythm pattern and made minor
but novel modifications based on the source’s pitch.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 7: The 1st example of analogy via replacing zr.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 8: The 2nd analogy example via replacing zr.

Figure 8 shows a more extreme case, in which Figure
8(a) contains only 16th notes of the same pitch. Again,
we see the generated target in Figure 8(b) maintains the
source’s pitch contour while matching the given rhythm
pattern.

4.2.3 Analogy by Replacing Chord

(a) Changing all the chords down a semitone, resulting in the
key change from G major to Bb minor.

(b) Changing the key from G major to G minor.

Figure 9: Two examples of replacing the original chord.

Though chord is not our main focus, here we show
two analogy examples in Figure 9 to answer “what if” the
source melody is composed using some other chord pro-
gressions. Figure 9(a) shows an example where the key is
Bb minor. An interesting observation is the new melody

Rest(A) + Rythm(B)

4.2 Examples of Generation via Analogy

We present several representative “what if” examples by
swapping or interpolating the latent representations of dif-
ferent pieces. Throughout this section, we use the follow-
ing example (shown in Figure 4), an 8-beat melody from
the Nottingham Dataset [10] as the source, and the tar-
get rhythm or pitch will be borrowed from other pieces.
(MIDI demos are available at https://github.com/
cdyrhjohn/Deep-Music-Analogy-Demos.)

Figure 4: The source melody.

4.2.1 Analogy by replacing zp

Two examples are presented. In both cases, the latent
pitch representation and the chord condition of the source
melody are replaced with new ones from other pieces.
In other words, the model answers the analogy question:
“source’s pitch : source melody :: target’s pitch : ?”

Figure 5 shows the first example, where Figure 5(a)
shows the piece from which the pitch and chords are bor-
rowed, and Figure 5(b) shows the generated melody. From
Figure 5(a), we see the target melody is in a different key
(D major) with a larger pitch range than the source and
a big pitch jump in the beginning. From Figure 5(b), we
see the generated new melody captures such pitch features
while keeping the rhythm of the source unchanged.

(a) Target’s pitch and chord.

(b) The generated target music, using the pitch and chord from
(a) and the rhythm from the source.

Figure 5: The 1st example of analogy via replacing zp.

(a) Target’s pitch and chord.

(b) The generated target, using the pitch and chord from (a) and
the rhythm from the source.

Figure 6: The 2nd analogy example via replacing zp.

Figure 6 shows another example, whose subplots share
the same meanings with the previous one. From Figure
6(a), we see the first measure of the target’s melody is a
broken chord of Gmaj, while the second measure is the G
major scale. From Figure 6(b), we see the generated new
melody captures these pitch features. Moreover, it retains

the source’s rhythm and ignores the dotted eighth and six-
teenth notes in Figure 6(a).

4.2.2 Analogy by replacing zr

Similar to the previous section, this section shows two ex-
ample answers to the question: “source’s rhythm : source
melody :: target’s rhythm : ?” by replacing zr. Figure
7 shows the first example, where Figure 7(a) contains the
new rhythm pattern quite different from the source, and
Figure 7(b) is the generated target. We see that Figure 7(b)
perfectly inherited the new rhythm pattern and made minor
but novel modifications based on the source’s pitch.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 7: The 1st example of analogy via replacing zr.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 8: The 2nd analogy example via replacing zr.

Figure 8 shows a more extreme case, in which Figure
8(a) contains only 16th notes of the same pitch. Again,
we see the generated target in Figure 8(b) maintains the
source’s pitch contour while matching the given rhythm
pattern.

4.2.3 Analogy by Replacing Chord

(a) Changing all the chords down a semitone, resulting in the
key change from G major to Bb minor.

(b) Changing the key from G major to G minor.

Figure 9: Two examples of replacing the original chord.

Though chord is not our main focus, here we show
two analogy examples in Figure 9 to answer “what if” the
source melody is composed using some other chord pro-
gressions. Figure 9(a) shows an example where the key is
Bb minor. An interesting observation is the new melody

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Examples EC2-VAE [Yang et al., 2019]

129

Original Melody B

Rythm Reference C

Rest(B) + Rythm(C)

4.2 Examples of Generation via Analogy

We present several representative “what if” examples by
swapping or interpolating the latent representations of dif-
ferent pieces. Throughout this section, we use the follow-
ing example (shown in Figure 4), an 8-beat melody from
the Nottingham Dataset [10] as the source, and the tar-
get rhythm or pitch will be borrowed from other pieces.
(MIDI demos are available at https://github.com/
cdyrhjohn/Deep-Music-Analogy-Demos.)

Figure 4: The source melody.

4.2.1 Analogy by replacing zp

Two examples are presented. In both cases, the latent
pitch representation and the chord condition of the source
melody are replaced with new ones from other pieces.
In other words, the model answers the analogy question:
“source’s pitch : source melody :: target’s pitch : ?”

Figure 5 shows the first example, where Figure 5(a)
shows the piece from which the pitch and chords are bor-
rowed, and Figure 5(b) shows the generated melody. From
Figure 5(a), we see the target melody is in a different key
(D major) with a larger pitch range than the source and
a big pitch jump in the beginning. From Figure 5(b), we
see the generated new melody captures such pitch features
while keeping the rhythm of the source unchanged.

(a) Target’s pitch and chord.

(b) The generated target music, using the pitch and chord from
(a) and the rhythm from the source.

Figure 5: The 1st example of analogy via replacing zp.

(a) Target’s pitch and chord.

(b) The generated target, using the pitch and chord from (a) and
the rhythm from the source.

Figure 6: The 2nd analogy example via replacing zp.

Figure 6 shows another example, whose subplots share
the same meanings with the previous one. From Figure
6(a), we see the first measure of the target’s melody is a
broken chord of Gmaj, while the second measure is the G
major scale. From Figure 6(b), we see the generated new
melody captures these pitch features. Moreover, it retains

the source’s rhythm and ignores the dotted eighth and six-
teenth notes in Figure 6(a).

4.2.2 Analogy by replacing zr

Similar to the previous section, this section shows two ex-
ample answers to the question: “source’s rhythm : source
melody :: target’s rhythm : ?” by replacing zr. Figure
7 shows the first example, where Figure 7(a) contains the
new rhythm pattern quite different from the source, and
Figure 7(b) is the generated target. We see that Figure 7(b)
perfectly inherited the new rhythm pattern and made minor
but novel modifications based on the source’s pitch.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 7: The 1st example of analogy via replacing zr.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 8: The 2nd analogy example via replacing zr.

Figure 8 shows a more extreme case, in which Figure
8(a) contains only 16th notes of the same pitch. Again,
we see the generated target in Figure 8(b) maintains the
source’s pitch contour while matching the given rhythm
pattern.

4.2.3 Analogy by Replacing Chord

(a) Changing all the chords down a semitone, resulting in the
key change from G major to Bb minor.

(b) Changing the key from G major to G minor.

Figure 9: Two examples of replacing the original chord.

Though chord is not our main focus, here we show
two analogy examples in Figure 9 to answer “what if” the
source melody is composed using some other chord pro-
gressions. Figure 9(a) shows an example where the key is
Bb minor. An interesting observation is the new melody

4.2 Examples of Generation via Analogy

We present several representative “what if” examples by
swapping or interpolating the latent representations of dif-
ferent pieces. Throughout this section, we use the follow-
ing example (shown in Figure 4), an 8-beat melody from
the Nottingham Dataset [10] as the source, and the tar-
get rhythm or pitch will be borrowed from other pieces.
(MIDI demos are available at https://github.com/
cdyrhjohn/Deep-Music-Analogy-Demos.)

Figure 4: The source melody.

4.2.1 Analogy by replacing zp

Two examples are presented. In both cases, the latent
pitch representation and the chord condition of the source
melody are replaced with new ones from other pieces.
In other words, the model answers the analogy question:
“source’s pitch : source melody :: target’s pitch : ?”

Figure 5 shows the first example, where Figure 5(a)
shows the piece from which the pitch and chords are bor-
rowed, and Figure 5(b) shows the generated melody. From
Figure 5(a), we see the target melody is in a different key
(D major) with a larger pitch range than the source and
a big pitch jump in the beginning. From Figure 5(b), we
see the generated new melody captures such pitch features
while keeping the rhythm of the source unchanged.

(a) Target’s pitch and chord.

(b) The generated target music, using the pitch and chord from
(a) and the rhythm from the source.

Figure 5: The 1st example of analogy via replacing zp.

(a) Target’s pitch and chord.

(b) The generated target, using the pitch and chord from (a) and
the rhythm from the source.

Figure 6: The 2nd analogy example via replacing zp.

Figure 6 shows another example, whose subplots share
the same meanings with the previous one. From Figure
6(a), we see the first measure of the target’s melody is a
broken chord of Gmaj, while the second measure is the G
major scale. From Figure 6(b), we see the generated new
melody captures these pitch features. Moreover, it retains

the source’s rhythm and ignores the dotted eighth and six-
teenth notes in Figure 6(a).

4.2.2 Analogy by replacing zr

Similar to the previous section, this section shows two ex-
ample answers to the question: “source’s rhythm : source
melody :: target’s rhythm : ?” by replacing zr. Figure
7 shows the first example, where Figure 7(a) contains the
new rhythm pattern quite different from the source, and
Figure 7(b) is the generated target. We see that Figure 7(b)
perfectly inherited the new rhythm pattern and made minor
but novel modifications based on the source’s pitch.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 7: The 1st example of analogy via replacing zr.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 8: The 2nd analogy example via replacing zr.

Figure 8 shows a more extreme case, in which Figure
8(a) contains only 16th notes of the same pitch. Again,
we see the generated target in Figure 8(b) maintains the
source’s pitch contour while matching the given rhythm
pattern.

4.2.3 Analogy by Replacing Chord

(a) Changing all the chords down a semitone, resulting in the
key change from G major to Bb minor.

(b) Changing the key from G major to G minor.

Figure 9: Two examples of replacing the original chord.

Though chord is not our main focus, here we show
two analogy examples in Figure 9 to answer “what if” the
source melody is composed using some other chord pro-
gressions. Figure 9(a) shows an example where the key is
Bb minor. An interesting observation is the new melody

4.2 Examples of Generation via Analogy

We present several representative “what if” examples by
swapping or interpolating the latent representations of dif-
ferent pieces. Throughout this section, we use the follow-
ing example (shown in Figure 4), an 8-beat melody from
the Nottingham Dataset [10] as the source, and the tar-
get rhythm or pitch will be borrowed from other pieces.
(MIDI demos are available at https://github.com/
cdyrhjohn/Deep-Music-Analogy-Demos.)

Figure 4: The source melody.

4.2.1 Analogy by replacing zp

Two examples are presented. In both cases, the latent
pitch representation and the chord condition of the source
melody are replaced with new ones from other pieces.
In other words, the model answers the analogy question:
“source’s pitch : source melody :: target’s pitch : ?”

Figure 5 shows the first example, where Figure 5(a)
shows the piece from which the pitch and chords are bor-
rowed, and Figure 5(b) shows the generated melody. From
Figure 5(a), we see the target melody is in a different key
(D major) with a larger pitch range than the source and
a big pitch jump in the beginning. From Figure 5(b), we
see the generated new melody captures such pitch features
while keeping the rhythm of the source unchanged.

(a) Target’s pitch and chord.

(b) The generated target music, using the pitch and chord from
(a) and the rhythm from the source.

Figure 5: The 1st example of analogy via replacing zp.

(a) Target’s pitch and chord.

(b) The generated target, using the pitch and chord from (a) and
the rhythm from the source.

Figure 6: The 2nd analogy example via replacing zp.

Figure 6 shows another example, whose subplots share
the same meanings with the previous one. From Figure
6(a), we see the first measure of the target’s melody is a
broken chord of Gmaj, while the second measure is the G
major scale. From Figure 6(b), we see the generated new
melody captures these pitch features. Moreover, it retains

the source’s rhythm and ignores the dotted eighth and six-
teenth notes in Figure 6(a).

4.2.2 Analogy by replacing zr

Similar to the previous section, this section shows two ex-
ample answers to the question: “source’s rhythm : source
melody :: target’s rhythm : ?” by replacing zr. Figure
7 shows the first example, where Figure 7(a) contains the
new rhythm pattern quite different from the source, and
Figure 7(b) is the generated target. We see that Figure 7(b)
perfectly inherited the new rhythm pattern and made minor
but novel modifications based on the source’s pitch.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 7: The 1st example of analogy via replacing zr.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 8: The 2nd analogy example via replacing zr.

Figure 8 shows a more extreme case, in which Figure
8(a) contains only 16th notes of the same pitch. Again,
we see the generated target in Figure 8(b) maintains the
source’s pitch contour while matching the given rhythm
pattern.

4.2.3 Analogy by Replacing Chord

(a) Changing all the chords down a semitone, resulting in the
key change from G major to Bb minor.

(b) Changing the key from G major to G minor.

Figure 9: Two examples of replacing the original chord.

Though chord is not our main focus, here we show
two analogy examples in Figure 9 to answer “what if” the
source melody is composed using some other chord pro-
gressions. Figure 9(a) shows an example where the key is
Bb minor. An interesting observation is the new melody

Deep Learning – Music Generation – 2019Jean-Pierre Briot

MusicVAE [Roberts et al., 2018]

130

• Comparing Interpolation
– In the data space (melodies)

– In the latent space

Deep Learning – Music Generation – 2019Jean-Pierre Briot

MusicVAE [Roberts et al., 2018]

131

• Adding a high note density attribute vector

Deep Learning – Music Generation – 2019Jean-Pierre Briot

BeatBlender in TensorFlow.js
MusicVAE [Roberts et al., 2018]

132

https://experiments.withgoogle.com/ai/beat-blender/view/

https://experiments.withgoogle.com/ai/beat-blender/view/

Deep Learning – Music Generation – 2019Jean-Pierre Briot

LatentLoops in TensorFlow.js
MusicVAE [Roberts et al., 2018]

133
https://teampieshop.github.io/latent-loops/

https://teampieshop.github.io/latent-loops/

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Generative Adversarial Networks

134

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃ሺீሻ
A differentiable function,
𝐺 (here having parameters
𝜃ሺீሻ), mapping from the
latent space, ℝ௅, to the
data space, ℝெ

Discriminator: 𝐷 𝑥, 𝜃ሺ𝐷ሻ
A differentiable function, 𝐷 (here
having parameters 𝜃ሺ𝐷ሻ),
mapping from the data space,
ℝெ, to a scalar between 0 and 1
representing the probability that
the data is real

Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃ሺீሻ
A differentiable function,
𝐺 (here having parameters
𝜃ሺீሻ), mapping from the
latent space, ℝ௅, to the
data space, ℝெ

Discriminator: 𝐷 𝑥, 𝜃ሺ𝐷ሻ
A differentiable function, 𝐷 (here
having parameters 𝜃ሺ𝐷ሻ),
mapping from the data space,
ℝெ, to a scalar between 0 and 1
representing the probability that
the data is real

Generator

Discriminator

135

Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃ሺீሻ
A differentiable function,
𝐺 (here having parameters
𝜃ሺீሻ), mapping from the
latent space, ℝ௅, to the
data space, ℝெ

Discriminator: 𝐷 𝑥, 𝜃ሺ𝐷ሻ
A differentiable function, 𝐷 (here
having parameters 𝜃ሺ𝐷ሻ),
mapping from the data space,
ℝெ, to a scalar between 0 and 1
representing the probability that
the data is real

Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃ሺீሻ
A differentiable function,
𝐺 (here having parameters
𝜃ሺீሻ), mapping from the
latent space, ℝ௅, to the
data space, ℝெ

Discriminator: 𝐷 𝑥, 𝜃ሺ𝐷ሻ
A differentiable function, 𝐷 (here
having parameters 𝜃ሺ𝐷ሻ),
mapping from the data space,
ℝெ, to a scalar between 0 and 1
representing the probability that
the data is real

Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃ሺீሻ
A differentiable function,
𝐺 (here having parameters
𝜃ሺீሻ), mapping from the
latent space, ℝ௅, to the
data space, ℝெ

Discriminator: 𝐷 𝑥, 𝜃ሺ𝐷ሻ
A differentiable function, 𝐷 (here
having parameters 𝜃ሺ𝐷ሻ),
mapping from the data space,
ℝெ, to a scalar between 0 and 1
representing the probability that
the data is real

Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃ሺீሻ
A differentiable function,
𝐺 (here having parameters
𝜃ሺீሻ), mapping from the
latent space, ℝ௅, to the
data space, ℝெ

Discriminator: 𝐷 𝑥, 𝜃ሺ𝐷ሻ
A differentiable function, 𝐷 (here
having parameters 𝜃ሺ𝐷ሻ),
mapping from the data space,
ℝெ, to a scalar between 0 and 1
representing the probability that
the data is real

Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃ሺீሻ
A differentiable function,
𝐺 (here having parameters
𝜃ሺீሻ), mapping from the
latent space, ℝ௅, to the
data space, ℝெ

Discriminator: 𝐷 𝑥, 𝜃ሺ𝐷ሻ
A differentiable function, 𝐷 (here
having parameters 𝜃ሺ𝐷ሻ),
mapping from the data space,
ℝெ, to a scalar between 0 and 1
representing the probability that
the data is real

Real Data Base

Fake

Real

Real
or

Fake ?

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

136

Figure by [Nam Hyuk Ahn, 2017]

• Training Simultaneously 2 Neural Networks
– Generator

» Transforms Random noise Vectors into Faked Samples

– Discriminator
» Estimates probability that the Sample came from training data rather than from G

– Minimax 2-player game
D(x): PD(x from real data) (Correct)
D(G(z)): PD(G(z) from real data) (Incorrect)
1 - D(G(z)): PD(G(z) from Generator) (Correct)

Prediction by D

96 5 Architecture

Fig. 5.37 Generative adversarial networks (GAN) architecture. Reproduced from [145] with the
permission of O’Reilly Media

This corresponds to a minimax two-player game, with one unique (final) solu-
tion82: G recovers the training data distribution and D outputs 1/2 everywhere. The
generator is then able to produce user-appealing synthetic samples from noise vec-
tors. The discriminator may then be discarded.

The minimax relationship is defined in Equation 5.26.

min
G

max
D

V (G,D) = Ex⇠pData [log D(x)]+Ez⇠pz(z)[log(1�D(G(z)))] (5.26)

• D(x) represents the probability that x came from the real data (i.e. the correct
estimation by D); and

• Ex⇠pData [log D(x)] is the expectation83 of log D(x) with respect to x being drawn
from the real data.

It is thus D’s objective to estimate correctly real data, that is to maximize the
Ex⇠pData [log D(x)] term.

• D(G(z)) represents the probability that G(z) came from the real data (i.e. the
uncorrect estimation by D);

• 1�D(G(z)) represents the probability that G(z) did not come from the real data,
i.e. that it was generated by G (i.e. the correct estimation by D); and

• Ez⇠pz(z)[log(1�D(G(z)))] is the expectation of log(1�D(G(z))) with respect
to G(z) being produced by G from z random noise.

82 It corresponds to the Nash equilibrium of the game. In game theory, the intuition of a Nash
equilibrium is a solution where no player can benefit by changing strategies while the other players
keep theirs unchanged, see, for example, [133].
83 The expectation has been introduced in Section 5.8.6.

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Examples of GAN Generated Images

CelebFaces Attributes Dataset (CelebA)
> 200K celebrity images

Synthetic (Generated) Celebrity images

[Karras et al., 2018]

[Brundage et al., 2018]

137

Deep Learning – Music Generation – 2019Jean-Pierre Briot

MidiNet [Yang et al., 2017]

• Conditioning information
– Previous measure
– Chord sequence

• Scope:
– Previous measure (1D conditions)
– Various previous measures (2D conditions)

• Fine control:
– Conditioning on previous measure 1D/2D and on chord sequence 1D/2D for one/all

convolutional layers
– Ex: previous measure 1D and on chord sequence 2D for all convolutional layers

» Follows more chord sequence

– Pop music dataset
138

https://soundcloud.com/vgtsv6jf5fwq/model3

https://soundcloud.com/vgtsv6jf5fwq/model3

Deep Learning – Music Generation – 2019Jean-Pierre Briot

GAN Examples – Celtic Melodies

139

Deep Learning – Music Generation – 2019Jean-Pierre Briot

GAN Examples – Bach Chorales

140

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Conditional LSTM-GAN [Yu, 2019]

• Melody Generation from Lyrics
• GAN Architecture
• Conditional(GAN(LSTM))

141

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Conditional LSTM-GAN [Yu, 2019]

142

Deep Learning – Music Generation – 2019Jean-Pierre Briot

VAE vs GAN

• VAE (Variational Autoencoder) and GAN (Generative Adversarial Networks)

Some Similarities:

• Are both generative architectures

• Generate from random latent variables

Differences:

• VAE is representational of the whole training dataset

• GAN is not

• VAE Smooth control interface for exploring latent data space

• GAN has some (ex: interpolation) but not as for VAE

• GAN produces better quality content (ex: better resolution images)

– Not a main issue for symbolic music representation

[Dykeman, 2016]

143

Interpolation is impressive

https://arxiv.org/pdf/1703.10717.pdf

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Issues

144

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Open Issues

• Structure

– Ex: LSTM [Hochreiter & Schmidhuber, 1997]

– Clockwork RNN [Koutnik et al., 2014]

– SampleRNN [Mehri et al., 2017]

– MusicVAE [Roberts et al., 2018]

• Control

– Tonality Conformance

– Rhythm

– Ex: C-RBM [Lattner et al., 2016]

– Conditioning

– Arbitrary Constraints

• Creativity Incentive

– Vs Style Conformance

– Ex: CAN [Elgammal et al., 2017]

• Interactivity/Incrementality

– Ex: DeepBach [Hadjeres et al., 2017]

– Incremental Sampling

A Clockwork RNN

Figure 1. CW-RNN architecture is similar to a simple RNN with an input, output and hidden layer. The hidden layer is partitioned into g
modules each with its own clock rate. Within each module the neurons are fully interconnected. Neurons in faster module i are connected
to neurons in a slower module j only if a clock period Ti < Tj .

2. Related Work
Contributions to the sequence modeling and recognition
that are relevant to CW-RNN are introduced in this section.
The primary focus is on RNN extensions that deal with the
problem of bridging long time lags.

One model that is similar in spirit to our approach is the
NARX RNN1 (Lin et al., 1996). But instead of simplifying
the network, it introduces an additional sets of recurrent
connections with time lags of 2,3..k time steps. These ad-
ditional connections help to bridge long time lags, but in-
troduce many additional parameters that make NARX RNN
training more difficult and run k times slower.

Long Short-Term Memory (LSTM; Hochreiter & Schmid-
huber, 1997) uses a specialized architecture that allows in-
formation to be stored in a linear unit called a constant error

carousel (CEC) indefinitely. The cell containing the CEC
has a set of multiplicative units (gates) connected to other
cells that regulate when new information enters the CEC
(input gate), when the activation of the CEC is output to the
rest of the network (output gate), and when the activation
decays or is ”forgotten” (forget gate). These networks have
been very successful recently in speech and handwriting
recognition (Graves et al., 2005; 2009; Sak et al., 2014).

Stacking LSTMs into several layers (Fernandez et al., 2007;
Graves & Schmidhuber, 2009) aims for hierarchical se-
quence processing. Such a hierarchy, equipped with Connec-

1NARX stands for Non-linear Auto-Regressive model with
eXogeneous inputs

tionist Temporal Classification (CTC; Graves et al., 2006),
performs simultaneous segmentation and recognition of se-
quences. Its deep variant currently holds the state-of-the-
art result in phoneme recognition on the TIMIT database
(Graves et al., 2013).

Temporal Transition Hierarchy (TTH; Ring, 1993) incre-
mentally adds high-order neurons in order to build a memory
that is used to disambiguate an input at the current time step.
This approach can, in principle, bridge time intervals of any
length, but with proportionally growing network size. The
model was recently improved by adding recurrent connec-
tions (Ring, 2011) that prevent it from bloating by reusing
the high-level nodes through the recurrent connections.

One of the earliest attempts to enable RNNs to handle
long-term dependencies is the Reduced Description Net-
work (Mozer, 1992; 1994). It uses leaky neurons whose
activation changes only a bit in response to its inputs. This
technique was recently picked up by Echo State Networks
(ESN; Jaeger, 2002).

A similar technique has been used by Sutskever & Hinton
(2010) to solve some serial recall tasks. These Temporal-
Kernel RNNs add a connection from each neuron to itself
that has a weight that decays exponentially in time. This
is implemented in a way that can be computed efficiently,
however, its performance is still inferior to LSTM.

Evolino (Schmidhuber et al., 2005; 2007) feeds the input
to an RNN (which can be e.g. LSTM to cope with long
time lags) and then transforms the RNN outputs to the target
sequences via a optimal linear mapping, that is computed

145

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Style vs/and Control

146

Style (Learnt) Control (Imposed)

[Flow Machines]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Style vs/and Originality

147

Style (learnt) Originality

[Mimi & Eunice]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Creative Adversarial Networks (CAN) [Elgammal et al., 2017]

148

• Extension of GAN

• Combining 2 (Contradictory) Objectives:

– How Discriminator believes that the sample comes from the training dataset (GAN)

– How Easily the Discriminator can classify the sample into established styles (classes)
» If there is strong ambiguity (i.e., various classes are equiprobable), this means that the sample is difficult to

fit within the existing art styles

» Maybe a new style has been created…

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Creative Adversarial Networks (CAN) – Ex. of Paintings Generated

149

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Control

• Strategies:
– Sampling
– Conditionning (Parametrization)
– Input Manipulation
– Reinforcement
– Unit Selection

– Bottom up (Low-level adjustment)
» Ex: Sampling

– Top down (Structure imposition)
» Ex: Unit and Selection

• Entry points (Hooks)
– Input
– Hidden
– Output
– Encapsulation/Reformulation

150

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Markov Models

151

• Operational

• May attach Constraints and Functions

– Ex: Factor Graphs, Markov Constraints [Pachet & Roy, 2011]

A

C

E

B

G

0.3

0.3

0.2

0.5

0.2

0.6

0.4

0.7

0.3
0.5

0.5

0.3

0.2

in terms of execution time.
In this paper, we present a technique that, given a corpus, ensures

real time generation of verses that satisfy structural constraints. We
first describe the technique and, in Section 4, we show how it can be
used.

3 FINITE-LENGTH MARKOV PROCESSES
WITH CONSTRAINTS

A Markov process is a random process with a short-term memory: it
generates states with a probability that depends only on a fixed, finite
number of past states. The number of past states used to define the
distribution of future states defines the order of the Markov process.
A Markov process M of order n can be estimated from a corpus
using Maximum Likelihood Estimation (MLE), by computing the
relative frequencies (RF) of each n-gram, i.e., continuous sequence
of n words that appear in the corpus. More sophisticated techniques,
such as smoothing techniques [8], can be used, to deal with the zero-
frequency problem caused by the sparsity of the RF estimate. We
decided to use MLE, because it gives an acceptable estimate of the
corpus used in this paper. However our approach is independent of
the way the process M is estimated, and is therefore compatible with
any of these techniques.

A Markov process can be used to generate new word sequences
with a random walk procedure consisting of drawing random states
according to the word transition probabilities. Each word wi is gen-
erated with probability PM (wi|wi−n, . . . , wi−1) depending only on
the n − 1 words previously generated. For instance, the order-1
Markov model of the following corpus:

• Clay loves Mary
• Mary loves Clay
• Clay loves Mary today
• Mary loves Paul today

is represented in Figure 1. A random walk could produce sequences
such as “loves Mary loves Clay loves”, or “Paul today”.

!"#$ "%&'()
*+,-

.#/$*+-

0#1"
*+,-
*+23 4%5#$

*+66

)

Figure 1. An order-1 Markov process learned from a corpus composed of
five words.

Markov processes do not provide any control on the structure of
the generated sequences. For instance, a constraint that imposes the
last word of a 4-word sequence to be “today” and a constraint that
imposes to the first word to rhyme with “today” create a long distance
dependency between the first and the last word of the sequence. In-
deed the only four-word sequences that satisfy these constraints are
“Clay loves Mary today” and “Clay loves Paul today”. Therefore, the
first word of the sequence must be “Clay”, excluding “Mary”, “Paul”,
“loves” and “today” as possible first states. This implicit dependency
cannot be represented in the initial Markov model. Obviously, the

model generates texts that do not necessarily rhyme. Generate-and-
test can be used to filter out incorrect sequences, but without any
guarantee that correct sequences will be generated.

The framework of Constrained Markov Processes allows precisely
to solve this issue, i.e., to generate Markov sequences that satisfy ex-
plicit control constraints, such as the rhyme constraint in the previous
example.

Following [14], the Markov process is reformulated as a constraint
satisfaction problem P . The sequence to generate is represented as
the sequence of finite-domain constrained variables of P . The tran-
sition probabilities are represented as Markov constraints holding on
these variables. Control constraints are represented as arbitrary con-
straints. The same authors showed, in [15], that if the control con-
straints are unary (i.e., they hold on a single variable) , the initial
Markov process M can be transformed in a constrained Markov pro-
cess M̃ with the following properties:

1. M̃ generates exactly the verses that satisfy the control constraints
and,

2. the admissible verses are generated with the same probabilities in
M and M̃ up to a constant factor.

M̃ is obtained in two steps. The first step makes the constraint sat-
isfaction problem P arc-consistent [10]: for each variable, the values
that violate at least one constraint are removed, until a fixed-point is
reached. An intermediary Markov process is built from M and P by
zeroing state transitions that are filtered out by the arc-consistency
procedure, i.e., the transitions that correspond to the removed val-
ues. This step guarantees that only correct sequences are generated
(Property 1. above). The first step affects the transition probabilities,
therefore, a second step is applied that adjusts the local transition
probabilities to get the initial global probability distribution of M
(Property 2.). M̃ is the resulting process. For more details about the
construction of M̃ and the proof that the obtained model satisfies 1.
and 2., see [15].

Coming back to the previous example, the Markov process Mex is
transformed in the process M̃ex in Figure 2.

Figure 2. A constrained Markov process M̃ex that generates verses
composed of 4 words and rhymes with the word yesterday. M̃ex and Mex

have the same probability distribution. M1, M2 and M3 represent the
Markov constraints, C1 represents the control constraint “rhyme with

today”, C4 represents the control constraint “be today”. The arrow labels
indicate the transition probabilities.

G. Barbieri et al. / Markov Constraints for Generating Lyrics with Style116

344 A. Papadopoulos et al.

X3f1 f2 f4

f3

X2X1

Fig. 1. The factor graph for the function p(X1, X2, X3) = f1(X1, X2) · f2(X2, X3) ·
f3(X1, X3) · f4(X3).

4 Belief Propagation for Markov and Regular

We apply those techniques to the problem of sampling constrained Markov
sequences, and describe belief propagation in the case where we impose sequences
to be recognised by an automaton A, i.e. to belong to the language L(A) of words
recognised by A. This is equivalent to sampling the target distribution ptarget
defined as:

ptarget (X1, . . . , Xn) ∝






P (X2|X1) · · · P (Xn|Xn−1) ·
P1(X1) · · · Pn(Xn)

if X1 · · · Xn ∈ L(A)

0 otherwise

We use the symbol ∝ to indicate that the equality holds after normalisation,
so that ptarget defines a probability function. P (X2|X1) · · · P (Xn|Xn−1) gives
the typical order 1 Markov probability of the sequences X1, . . . , Xn, provided
it is accepted by the automaton. Additionally, we add unary constraints Pi, i.e.
factors biasing each variable Xi individually. Implicitly, there is a big factor
holding on the full sequence X1, . . . , Xn taking value 1 when X1 · · · Xn ∈ L(A),
and value 0 otherwise, corresponding to a hard global constraint. Consequently,
the factor graph of ptarget is not a tree.

We propose a reformulation of ptarget (X1, . . . , Xn) into a new function preg of
Y1, . . . , Yn, where the new Yi variables take values (a, q) ∈ X ×Q, where a ∈ X is
a state of the Markov chain, and q ∈ Q is a state of the automaton. Recall that
transitions of the automaton are also labelled with elements of X . This function
preg is composed of simple binary factors, and its factor graph, which is tree
structured, is shown on Figure 2.

g1

Y1 Y2 YnYn−1 fn−1f1

gn−1g2 gn

Fig. 2. The factor graph of the distribution on Markov sequences accepted by an
automaton A, defined by preg(Y1, . . . , Yn)

alexandre.papadopoulos@lip6.fr

Deep Learning – Music Generation – 2019Jean-Pierre Briot

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Distribution of chunk size

Order min 1

Order min 2

Order min 3

Order min 4

Order min 3
max 10PlagiarismJunk Sweet spot

MIN ORDER = 3 & MAX ORDER = 10

MaxOrder Constraint

Constrained Higher-Order Markov

152

[Roy and Pachet, 2017]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Markov Model vs Deep Learning

+ Markov models are conceptually simple

+ Markov models have a simple implementation and a simple learning algorithm as the model is a transition probability
table

-- Neural network models are conceptually simple but the optimized implementations of current deep network architecture
may be complex and need a lot of tuning

-- Order 1 Markov models (that is, considering only the previous state) do not capture long-term temporal structures

-- Order n Markov models (considering n previous states) are possible but require an explosive training set size and can
lead to plagiarism

+ Neural networks can capture various types of relations, contexts and regularities

+ Deep networks can learn long-term and high-order dependencies

+ Markov models can learn from a few examples

-- Neural networks need a lot of examples in order to be able to learn well

-- Markov models do not generalize very well

+ Neural networks generalize better through the use of distributed representations

+ Markov models are operational models (automata) on which some control on the generation could be attached

-- Deep networks are generative models with a distributed representation and therefore with no direct control to be attached

Markov models simpler

Deep learning more conformant

153

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Configuration and Control Issues

• Corpus (Curation): Training Examples -> Style

• Architecture(s)
– Single or Compound
– Conditioning (Parameterization)
– Configuration (Hyperparameters)

– Loss Function
» From Prediction or Reconstruction Error to Incorporating more and

more Constraints
– External Loss/Control, ex: Adversarial/GAN

• Strategy(ies)
– Data/Input Manipulation, Ex: Latent Variables

• Improbable Settings – Imagination Limits?
• Interactivity

154

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Autonomous Generation vs Creation Support

155

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Autonomous vs Assisted Music Creation

156

• Autonomous Generation/Interpretation
– Turing Test
– Symbolic or/and Audio Music Generation
– Parametrization/User Preferences (Style, Mood, etc.)
– For Commercials and Documentaries
– Create Royalty-free or Copyright-buyable Music
– Ex:

• Assistance to Human Composers and Musicians
– Propose
– Refine
– Analyze
– Harmonize
– Produce
– Ex: FlowComposer [Pachet et al., 2014]

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Autonomous Music Making

• Symbolic or/and Audio Music Generation

• For Commercials and Documentaries
• Create Royalty-free or Copyright-buyable Music
• Based on Deep learning + Samples + Sound processing techniques

+ Business model
-- Musical model

157

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Bach Chorales Turing Test

• Autonomous Artificial Musicians

• Music Composition Turing test
– Imitation Game Scenario [Turing, 1950]
– Designed by A. Turing to explore the question "Can Machines think?"

A. M. Turing (1950) Computing Machinery and Intelligence. Mind 49: 433-460.

COMPUTING MACHINERY AND INTELLIGENCE

By A. M. Turing

1. The Imitation Game

I propose to consider the question, "Can machines think?" This should begin with
definitions of the meaning of the terms "machine" and "think." The definitions might be
framed so as to reflect so far as possible the normal use of the words, but this attitude is
dangerous, If the meaning of the words "machine" and "think" are to be found by
examining how they are commonly used it is difficult to escape the conclusion that the
meaning and the answer to the question, "Can machines think?" is to be sought in a
statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a
definition I shall replace the question by another, which is closely related to it and is
expressed in relatively unambiguous words.

The new form of the problem can be described in terms of a game which we call the
'imitation game." It is played with three people, a man (A), a woman (B), and an
interrogator (C) who may be of either sex. The interrogator stays in a room apart front the
other two. The object of the game for the interrogator is to determine which of the other
two is the man and which is the woman. He knows them by labels X and Y, and at the
end of the game he says either "X is A and Y is B" or "X is B and Y is A." The
interrogator is allowed to put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A's object in the game to try and
cause C to make the wrong identification. His answer might therefore be:

"My hair is shingled, and the longest strands are about nine inches long."

In order that tones of voice may not help the interrogator the answers should be written,
or better still, typewritten. The ideal arrangement is to have a teleprinter communicating
between the two rooms. Alternatively the question and answers can be repeated by an
intermediary. The object of the game for the third player (B) is to help the interrogator.
The best strategy for her is probably to give truthful answers. She can add such things as
"I am the woman, don't listen to him!" to her answers, but it will avail nothing as the man
can make similar remarks.

We now ask the question, "What will happen when a machine takes the part of A in this
game?" Will the interrogator decide wrongly as often when the game is played like this as
he does when the game is played between a man and a woman? These questions replace
our original, "Can machines think?"

(A) J. S. Bach (B) DeepBach [Hadjeres et al., 2017]

(C) Listener

?
– To evaluate artificial composers techniques
– To explore music cognition

158

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Bach Chorales Turing Test

159

• February 2017, Dutch TV Channel
• Bach vs DeepBach Turing Test

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Objective and Evaluation [Pachet, 2019]

160

Current Systems

Autonomous
Generalization-based

Future Systems

Augmentation/Assistance
Creative-incentived

Objective Create music Create music not possible
otherwise

Evaluation Please the listener Please the composer

Risk Conventional Surprising
But meaningful

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Co-Creativity

• Co-Creation by Human(s)+Machine(s)
– Ex: FlowComposer [Pachet et al., 2014]

– Continuator [Pachet, 2002]

– Omax/DYCI2 [Assayag et al., 2003]

161

Deep Learning – Music Generation – 2019Jean-Pierre Briot

FlowComposer [Pachet et al., 2014] – Demo (B. Carré)

162

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Hello World

163

• January 2018, Hello World, Flow Records
• Making Off

https://www.youtube.com/watch?v=yxTF-UFvoHU

https://www.youtube.com/watch?v=yxTF-UFvoHU

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Deep Learning
Co-Creation/Assistance & Interactivity

164

• YDCHT/MusicVAE [Roberts et al., 2018]
– Non interactive Generation
– Loops
– Collage

• DeepBach [Hadjeres et al., 2017]
– (Incremental Sampling)
– Interactive/Selective Regeneration

• MeasureVAE+LatentRNN+MeasureVAE [Pati et al., 2019]
– Inpainting
– Previous Measure + Next measure
– -> Latent Embeddings -> Missing Embedding
– -> Missing Measure

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Interactivity
DeepBach [Hadjeres et al., 2017]

165

https://www.youtube.com/watch?time_continue=28&v=OkkKjy3WRNo

https://www.youtube.com/watch?time_continue=28&v=OkkKjy3WRNo

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Interactive Creation Environment

• A Deep Learning-Based Flow Composer Analog ?

• Slower Learning than for Markov Models

– But GPUs, etc.

– And Corpus Pre-Training

• No (or not yet) Exact Control Method (Markov Constraints)

• Various Architectures/Strategies

• Inspiration, RNN-based

• Complementation, Feedforward-based

• Control, VAE-based

• Inpairing, (V)AE+RNN-based

166

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Conclusion/Prospects

167

• Deep Learning-based Music Generation
• Successes and Limits/Prospects

• Objective Loss Function Hypothesis
• Conformance Pros and Cons
• Control
• Structure
• Explication

• Markov Models (and other Models) still Interesting
• Symbolic AI (GOFAI) still Necessary
• Automated Generation vs Human-Machine Co-Creation
• New Usages

Deep Learning – Music Generation – 2019Jean-Pierre Briot

(Some) Other References

• Jordi Pons, Neural Networks For Music: A Journey Through Its History,
October 2018, https://towardsdatascience.com/neural-networks-for-music-
a-journey-through-its-history-91f93c3459fb

• Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT
Press, 2018

• Andrew Ng, Machine Learning Yearning, Deeplearning.ai
• Tom Mitchell, Machine Learning, McGraw Hill, 2017
• Pedro Domingos, The Master algorithm, Basic Books, 2015
• Judea Pearl and Dana Mackenzie, The Book of Why, Penguin Books,

2018
• Gerhard Nierhaus, Algorithmic Composition: Paradigms of Automated

Music Generation, Springer, 2009
• David Cope, The Algorithmic Composer, A-R Editions, 2000
• Roger T. Dean and Alex McLean, The Oxford Handbook of Algorithmic

Music, Oxford Handbooks, Oxford University Press, 2018
• Curtis Roads, The Computer Music Tutorial, MIT Press, 1996

168

Deep Learning – Music Generation – 2019Jean-Pierre Briot

Thank You – Questions

169

