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Why/Outline

2

• Music Generation
• Recent boom using Deep Learning Techniques
• Very active domain

– Ex: Google Magenta Project

• What is New?
– From Initial Neural Networks

• Generative Architectures
– Variational Autoencoders (VAE)
– Generative Adversarial Networks (GAN)

• Issues
– Interaction, Control, Creativity, Structure

• Prospects
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Outline

• Deep Learning Music Generation Recent Achievements
• Neural Networks 
• A First Example of Music Generation
• Pioneering Work of Neural Network-based Music Generation

(1988)
• From Neural Networks to Deep Learning
• Deep Learning Progress and Architectures
• Variational Autoencoders (VAE)
• Generative Adversarial Networks (GAN)
• Autonomous Generation vs Creation Support
• Issues/Challenges
• Control
• Conclusion
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Recent Creations
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Doodle Bach Chorales

5
https://www.google.com/doodles/celebrating-johann-sebastian-bach

https://www.google.com/doodles/celebrating-johann-sebastian-bach
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Electro Dance-Pop Music 

• YDCHT (Young Americans Challenging High Technology)

• Chain Tripping Album, 30 August 2019

• Composed with Magenta MusicVAE [Roberts et al., 2018]

I’m so in love

I can feel it in my car

I can feel it in my heart,

I can feel it so hard

I want your phone to my brain

I want you to call my name

I want you to do it too

Oh, won’t you come, won’t you come

Won’t you work on my head

Be my number nine

Loud Light(Downtown) Dancing
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YDCHT + Magenta – Chain Tripping Album

• Melody/Chords/Rhythm Loops
– MusicVAE (VRAE)
– Training Corpus: Previous music by YDCHT

• Lyrics
– LSTM
– Training Corpus: YDCHT + Liked Lyrics

• Sounds
– Nsynth (Signal VAE)

• Images and Videos
– GAN

https://arstechnica.com/gaming/2019/08/yachts-chain-tripping-is-a-new-landmark-for-ai-
music-an-album-that-doesnt-suck/

https://arstechnica.com/gaming/2019/08/yachts-chain-tripping-is-a-new-landmark-for-ai-music-an-album-that-doesnt-suck/
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YDCHT + Magenta – Chain Tripping Album

• Rules:
– Every new song interpolated from existing YDCHT 

melodies
– 4 measures-long loops
– Cannot add any note, harmony
– Only substractive or transpositional changes
– Structure and collage allowed
– Assignment (to vocal, bass line…)

• Human Production and Arrangements

https://www.youtube.com/watch?time_continue=1378&v=pM9u9xcM_cs&feature=emb_logo

https://www.youtube.com/watch?time_continue=1378&v=pM9u9xcM_cs&feature=emb_logo
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Painting

• 26 October 2018, Christie’s Auction, New York, US$ 432 500
• Edmond de Belamy, Obvious (Collective)
• Created with Deep Learning (GAN)
• Trained with 15 000 paintings (XIV – XX centuries)
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Hello World
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• January 2018, Hello World

• Created by Musicians (Musical Direction: Skygge – aka Benoît Carré)
• with FlowComposer [Pachet et al., 2014]
• ERC Project Flow Machines [Pachet et al., 2012-2017]
• Various Techniques (Markov Constraints, Rules, …)

https://www.youtube.com/watch?v=iuWYQe3aGlg

https://www.youtube.com/watch?v=iuWYQe3aGlg
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Hello World

11

• January 2018, Hello World, Flow Records
• Making Off

https://www.youtube.com/watch?v=yxTF-UFvoHU

https://www.youtube.com/watch?v=yxTF-UFvoHU
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"Beyond the Fence" Musical

• PropperWryter

• The Cloul Lyricist

• Folk-RNN

• Flow Machines

• Arts Theater, London, February-March 2016

https://www.youtube.com/watch?time_continue=75&v=VZzI4sfCFjc
https://www.youtube.com/watch?v=IzeSDloI-7I

12

https://www.youtube.com/watch?time_continue=75&v=VZzI4sfCFjc
https://www.youtube.com/watch?v=IzeSDloI-7I
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Deep Learning
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Deep Learning
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• Boom Since 2012 (Imagenet Breakthrough)

• Image Recognition
• Weather Prediction
• Translation

• Speech Recognition
• Speech Synthesis
• Source Separation

• Music Creation
• Image Creation

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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Deep Reinforcement Learning [Silver et al., 2013]

• Deep Learning improves Other Machine Learning Paradigm Implementation:
– Reinforcement Learning

• Deep Reinforcement Learning
– Efficient Estimation of Gain (Q-Learning Q-Table)
– Massive Simulation/Evaluation (Massive Processing)
– Replay Mechanism (Massive Memory)

• First Application: Atari Games

• Second Application: Go
– Alpha Go, AlphaZero Go

15
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Speech/Music Separation

• Long Time Very Hard Problem, Now Resolved
• Cocktail Effect Voice Separation

• Music/Voice Separation

16

https://www.youtube.com/watch?v=vW51cG1Ox98

https://www.youtube.com/watch?time_continue=2&v=Cx7Me0Ayz1I

https://www.youtube.com/watch?v=vW51cG1Ox98
https://www.youtube.com/watch?time_continue=2&v=Cx7Me0Ayz1I
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From Neural Networks to Deep Learning

17
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Deep Learning
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• Overwhelming Success

• Simple Basic Receipt

– Linear/Logistic Regression

– Loss Function Minimization

• Technical Improvements (since First Neural Networks)

– Backpropagation, LSTM, Batch Normalization…

– Loss Function Wide Application

» Meta-Level, ex: LSTM

» Constraints, ex: VAE

– Optimized Implementations/Platforms

• Scale+

– CPU

– Data
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Principle – Error Prediction/Classification Feedback

19

X

If Error Adjust Connexion Weights
Training Examples Prediction or

Classification

Neural Networks in One Slide
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Principle – Error Prediction/Classification Feedback

20

X

If Error Adjust Connexion Weights
Training Examples Prediction or

Classification

Neural Networks in One Two Slides

θ1

Σθ2 sigmoidθ3

sigmoid(θ0+θ1x1+ θ2x2+…)
Weighted Sum

Weights Non Linear
Activation Function

Bias
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Foundation

• Neural Network =
• Successive Layers of Logistic Regression =
• Successive Layers of Linear Regression + Non 

Linear Activation Function
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Foundation

• Neural Network =
• Successive Layers of Logistic Regression =
• Successive Layers of Linear Regression + Non 

Linear Activation Function
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Input Layer
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Example (TensorFlow PlayGround)

23

http://playground.tensorflow.org/

http://playground.tensorflow.org/
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Nice Animation [3Blue1Brown]

https://www.youtube.com/watch?v=aircAruvnKk
24

https://www.youtube.com/watch?v=aircAruvnKk
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A First Example of Music Generation

25
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Curation Configuration Selection

Artistic Content Generation Basic Cycle

• Curation
– Collecting Examples (Training Set)
– Extensional Definition of the Style

• Configuration
– of the (Selected) Learning Model/Architecture

• Selection
– Among Results Generated
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Neural Network Direct Application

27

• Feedorward Architecture
• Classification Task (What Notes)
• Counterpoint (Chorale) Generation
• Training on the Set of (389) J. S. Bach Chorales (Choral Gesang)

Output: 3 MelodiesInput: 1 Melody
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Representation

C
B
A#
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G#
G

Score

Piano Roll

One hot Encoding

0 0 0

1 1
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Representation
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If time slice = sixteenth
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Music / Representation / Network

30

…

Input layer Output layerHidden layers

Soprano
Voice

Alto
Voice

Tenor
Voice

Bass
Voice

… …

One hot vectors
Input nodes
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ForwardBach

Original

Regenerated

Bach BWV 344 Chorale
(Training Example)
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ForwardBach
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https://www.youtube.com/watch?v=QiBM7-5hA6o

• December 2016, DeepBach, Gaëtan Hadjeres
• Deep Learning
• Training Set = 352 Chorales

https://www.youtube.com/watch?v=QiBM7-5hA6o
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Neural Network Music Composition by Prediction: 
Exploring the Benefits of Psychoacoustic 
Constraints and Multi-scale Processing 

MICHAEL C. MOZER 

In algorithmic music composition, a simple technique involves selecting notes sequentially 
according to a transition table that specifes the probability of the next note as a function 
of the previous context. A n  extension of this transition-table approach is described, using 
a recurrent autopredictive connectionist network called CONCERT.  C O N C E R T  is trained 
on a set of pieces with the aim of extracting stylistic regularities. C O N C E R T  can then be 
used to compose new pieces. A central ingredient of C O N C E R T  is the incorporation of 
psychologically grounded representations of pitch, duration and harmonic structure. C O N -  
C E R T  was tested on sets of examples artificially generated according to simple rules and 
was shown to learn the underlying structure, even where other approaches failed. In larger 
experiments, CONCERTwas  trained on sets ofJ. S. Bach pieces and traditional European 
folk melodies and was then allowed to compose novel melodies. Although the compositions 
are occasionally pleasant, and are preferred over compositions generated by a third-order 
transition table, the compositions sufjerfrom a lack of global coherence. To overcome this 
limitation, several methods are explored to permit C O N C E R T  to induce structure at both 
fine and coarse scales. In experiments with a training set of waltzes, these methods yielded 
limited success, but the overall results cast doubt on the promise of note-by-note prediction 
for composition. 

KEYWORDS: Music composition, neural networks, recurrent networks, psy- 
choacoustic representation, multi-scale processing. 

1. Introduction 

In creating music, composers bring to bear a wealth of knowledge of musical 
conventions. Some of this knowledge is based on the experience of the individual, 
some is culture specific, and perhaps some is universal. No matter what the source, 
this knowledge acts to constrain the composition process, specifying, for example, 
the musical pitches that form a scale, the pitch or chord progressions that are 
agreeable, and stylistic conventions like the division of a symphony into movements 
and the AABB form of a gavotte. If we hope to build automatic composition systems 
that create agreeable tunes, it will be necessary to incorporate knowledge of musical 
conventions into the systems. The difficulty is in deriving this knowledge in an 

M. C. Mozer, Department of Computer Science, and Institute of Cognitive Science, University of 
Colorado, Boulder, CO 80309-0430, USA. E-mail: moze@cs.colorado.edu. 
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WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
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† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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Creation By Refinement: A Creativity Paradigm 
for Gradient Descent Learning Networks 

J. P. Lewis 
Digital Sound Labora to ry  

New York Ins t i t u t e  of Technology 
Old Westbury, NY 11568 

ABSTRACT 

\Ye describe a paradigm for creating novel examples from the class of patterns recognized by a 
trained gradient descent associative learning network. The  paradigm consists of a learning phase, 
in which the networh learns to identify patterns of the desired class, followed by a simple syn- 
thesis algorithm, in which a haphazard ‘creation’ is refined by a gradient descent search comple- 
mentnrg t o  the one used i n  learning. This paradigm is alternative to one in which novel patterns 
are obtained by applying novel inputs to a learned mapping, and can be used for creative prob- 
Itwts such a< inusic compo<ition which are not described by an input-output mapping. A simple 
4rnulntion is sho\\n in which a back propagation network learns to judge simple patterns 
rcyrcwnting musical motifs, and then creates similar motifs. 

INTRODUCTION 

Thc ad\ ant age& \cliich conncrtionist~ or neural network approaches have shown in other applica- 
t ions are potent i d l y  relcvant to applications including simulation and computer arts which 
require the  grmcrntion of novel patterns having a desired structure. For example, in simulation 
problems h c ~ e  exist ing models are inadequate for simulation, the simulation may be developed 
directly from samplc-s of the da t a  to be modeled. 

The connertionist approarh is particularly appropriate for computer arts applications such as 
machine cnmpn’sitjon of music- /1,2] where the structure of the desired patterns is perceptually lim- 
ited rather than dctermined by physical law in a more direct form. The  problem of generating 
pntterns const.rnined by this structure is somewhat parallel to the perceptual problems for which 
connect i o n k t  approaches are well suited. 

C‘onversclj , attempt< to formulate satisfactory ‘‘laws’’ of composition (for example) have met with 
thc difficulty that t hvse laws are characteristically fuzzy and ill suited for algorithmic description. 
For exariiplr, in  westcm tonal music a composition is considered to have a fundamental tone 
(tonic) whi1.h is rrndwatond t hrnughout a composition and which should appear explicitly in the 
ending In some c : w s  a Composition does not end on the tonic however, and occasionally a com- 
position can be undr.rstootl in  terms of more than one tonic. Significantly, the existence of excep- 
tions does not invalidate the notion of tonality; music exhibiting these exceptions may neverthe- 
less be considered ‘tonal’ although we are unable to rigorously define what is meant by this. 

We will consider several approaches to generating novel patterns with neural networks, and 
describe one approach, termed ‘creation by refinement’ (CBH), which is suited for non- 
representat.iona1 creative problems such as music composition. 

11-229 

Peter M. Todd 
Department of Psychology 
Stanford University 
Stanford, California 94305 USA 
todd@psych.stanford.edu 

With the advent of von Neumann-style computers, 
widespread exploration of new methods of music 
composition became possible. For the first time, 
complex sequences of carefully specified symbolic 
operations could be performed in a rapid fashion. 
Composers could develop algorithms embodying 
the compositional rules they were interested in and 
then use a computer to carry out these algorithms. 
In this way, composers could soon tell whether the 
results of their rules held artistic merit. This ap- 
proach to algorithmic composition, based on the 
wedding between von Neumann computing ma- 
chinery and rule-based software systems, has been 
prevalent for the past thirty years. 

The arrival of a new paradigm for computing has 
made a different approach to algorithmic composi- 
tion possible. This new computing paradigm is 
called parallel distributed processing (PDP), also 
known as connectionism. Computation is per- 
formed by a collection of several simple processing 
units connected in a network and acting in coopera- 
tion (Rumelhart and McClelland 1986). This is in 
stark contrast to the single powerful central pro- 
cessor used in the von Neumann architecture. One 
of the major features of the PDP approach is that it 
replaces strict rule-following behavior with regu- 
larity-learning and generalization (Dolson 1989). 
This fundamental shift allows the development of 
new algorithmic composition methods that rely 
on learning the structure of existing musical ex- 
amples and generalizing from these learned struc- 
tures to compose new pieces. These methods con- 
trast greatly with the majority of older schemes 
that simply follow a previously assembled set of 
compositional rules, resulting in brittle systems 
typically unable to appropriately handle unexpected 
musical situations. 

Computer Music Journal, Vol. 13, No. 4, Winter 1989, 
? 1989 Massachusetts Institute of Technology. 

A Connectionist 

Approach To Algorithmic 

Composition 

To be sure, other algorithmic composition meth- 
ods in the past have been based on abstracting cer- 
tain features from musical examples and using 
these to create new compositions. Techniques such 
as Markov modeling with transition probability 
analysis (Jones 1981), Mathews' melody interpola- 
tion method (Mathews and Rosler 1968), and Cope's 
EMI system (Cope 1987) can all be placed in this 
category. However, the PDP computational para- 
digm provides a single powerful unifying approach 
within which to formulate a variety of algorithmic 
composition methods of this type. These new learn- 
ing methods combine many of the features of the 
techniques listed above and add a variety of new ca- 
pabilities. Perhaps most importantly, though, they 
yield different and interesting musical results. 

This paper presents a particular type of PDP 
network for music composition applications. Vari- 
ous issues are discussed in designing the network, 
choosing the music representation used, training 
the network, and using it for composition. Com- 
parisons are made to previous methods of algo- 
rithmic composition, and examples of the net- 
work's output are presented. This paper is intended 
to provide an indication of the power and range of 
PDP methods for algorithmic composition and to 
encourage others to begin exploring this new ap- 
proach. Hence, rather than merely presenting a 
reduced compositional technique, alternative ap- 
proaches and tangential ideas are included through- 
out as points of departure for further efforts. 

A Network for Learning Musical Structure 

Our new approach to algorithmic composition is 
first to create a network that can learn certain as- 
pects of musical structure, second to give the net- 
work a selection of musical examples from which 
to learn those structural aspects, and third to let 
the network use what it has learned to construct 

Todd 27 

Creation by Refinement
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Neural Network Music Composition by Prediction: 
Exploring the Benefits of Psychoacoustic 
Constraints and Multi-scale Processing 

MICHAEL C. MOZER 

In algorithmic music composition, a simple technique involves selecting notes sequentially 
according to a transition table that specifes the probability of the next note as a function 
of the previous context. A n  extension of this transition-table approach is described, using 
a recurrent autopredictive connectionist network called CONCERT.  C O N C E R T  is trained 
on a set of pieces with the aim of extracting stylistic regularities. C O N C E R T  can then be 
used to compose new pieces. A central ingredient of C O N C E R T  is the incorporation of 
psychologically grounded representations of pitch, duration and harmonic structure. C O N -  
C E R T  was tested on sets of examples artificially generated according to simple rules and 
was shown to learn the underlying structure, even where other approaches failed. In larger 
experiments, CONCERTwas  trained on sets ofJ. S. Bach pieces and traditional European 
folk melodies and was then allowed to compose novel melodies. Although the compositions 
are occasionally pleasant, and are preferred over compositions generated by a third-order 
transition table, the compositions sufjerfrom a lack of global coherence. To overcome this 
limitation, several methods are explored to permit C O N C E R T  to induce structure at both 
fine and coarse scales. In experiments with a training set of waltzes, these methods yielded 
limited success, but the overall results cast doubt on the promise of note-by-note prediction 
for composition. 

KEYWORDS: Music composition, neural networks, recurrent networks, psy- 
choacoustic representation, multi-scale processing. 

1. Introduction 

In creating music, composers bring to bear a wealth of knowledge of musical 
conventions. Some of this knowledge is based on the experience of the individual, 
some is culture specific, and perhaps some is universal. No matter what the source, 
this knowledge acts to constrain the composition process, specifying, for example, 
the musical pitches that form a scale, the pitch or chord progressions that are 
agreeable, and stylistic conventions like the division of a symphony into movements 
and the AABB form of a gavotte. If we hope to build automatic composition systems 
that create agreeable tunes, it will be necessary to incorporate knowledge of musical 
conventions into the systems. The difficulty is in deriving this knowledge in an 

M. C. Mozer, Department of Computer Science, and Institute of Cognitive Science, University of 
Colorado, Boulder, CO 80309-0430, USA. E-mail: moze@cs.colorado.edu. 
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Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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ABSTRACT 

\Ye describe a paradigm for creating novel examples from the class of patterns recognized by a 
trained gradient descent associative learning network. The  paradigm consists of a learning phase, 
in which the networh learns to identify patterns of the desired class, followed by a simple syn- 
thesis algorithm, in which a haphazard ‘creation’ is refined by a gradient descent search comple- 
mentnrg t o  the one used i n  learning. This paradigm is alternative to one in which novel patterns 
are obtained by applying novel inputs to a learned mapping, and can be used for creative prob- 
Itwts such a< inusic compo<ition which are not described by an input-output mapping. A simple 
4rnulntion is sho\\n in which a back propagation network learns to judge simple patterns 
rcyrcwnting musical motifs, and then creates similar motifs. 

INTRODUCTION 

Thc ad\ ant age& \cliich conncrtionist~ or neural network approaches have shown in other applica- 
t ions are potent i d l y  relcvant to applications including simulation and computer arts which 
require the  grmcrntion of novel patterns having a desired structure. For example, in simulation 
problems h c ~ e  exist ing models are inadequate for simulation, the simulation may be developed 
directly from samplc-s of the da t a  to be modeled. 

The connertionist approarh is particularly appropriate for computer arts applications such as 
machine cnmpn’sitjon of music- /1,2] where the structure of the desired patterns is perceptually lim- 
ited rather than dctermined by physical law in a more direct form. The  problem of generating 
pntterns const.rnined by this structure is somewhat parallel to the perceptual problems for which 
connect i o n k t  approaches are well suited. 

C‘onversclj , attempt< to formulate satisfactory ‘‘laws’’ of composition (for example) have met with 
thc difficulty that t hvse laws are characteristically fuzzy and ill suited for algorithmic description. 
For exariiplr, in  westcm tonal music a composition is considered to have a fundamental tone 
(tonic) whi1.h is rrndwatond t hrnughout a composition and which should appear explicitly in the 
ending In some c : w s  a Composition does not end on the tonic however, and occasionally a com- 
position can be undr.rstootl in  terms of more than one tonic. Significantly, the existence of excep- 
tions does not invalidate the notion of tonality; music exhibiting these exceptions may neverthe- 
less be considered ‘tonal’ although we are unable to rigorously define what is meant by this. 

We will consider several approaches to generating novel patterns with neural networks, and 
describe one approach, termed ‘creation by refinement’ (CBH), which is suited for non- 
representat.iona1 creative problems such as music composition. 
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With the advent of von Neumann-style computers, 
widespread exploration of new methods of music 
composition became possible. For the first time, 
complex sequences of carefully specified symbolic 
operations could be performed in a rapid fashion. 
Composers could develop algorithms embodying 
the compositional rules they were interested in and 
then use a computer to carry out these algorithms. 
In this way, composers could soon tell whether the 
results of their rules held artistic merit. This ap- 
proach to algorithmic composition, based on the 
wedding between von Neumann computing ma- 
chinery and rule-based software systems, has been 
prevalent for the past thirty years. 

The arrival of a new paradigm for computing has 
made a different approach to algorithmic composi- 
tion possible. This new computing paradigm is 
called parallel distributed processing (PDP), also 
known as connectionism. Computation is per- 
formed by a collection of several simple processing 
units connected in a network and acting in coopera- 
tion (Rumelhart and McClelland 1986). This is in 
stark contrast to the single powerful central pro- 
cessor used in the von Neumann architecture. One 
of the major features of the PDP approach is that it 
replaces strict rule-following behavior with regu- 
larity-learning and generalization (Dolson 1989). 
This fundamental shift allows the development of 
new algorithmic composition methods that rely 
on learning the structure of existing musical ex- 
amples and generalizing from these learned struc- 
tures to compose new pieces. These methods con- 
trast greatly with the majority of older schemes 
that simply follow a previously assembled set of 
compositional rules, resulting in brittle systems 
typically unable to appropriately handle unexpected 
musical situations. 

Computer Music Journal, Vol. 13, No. 4, Winter 1989, 
? 1989 Massachusetts Institute of Technology. 

A Connectionist 

Approach To Algorithmic 

Composition 

To be sure, other algorithmic composition meth- 
ods in the past have been based on abstracting cer- 
tain features from musical examples and using 
these to create new compositions. Techniques such 
as Markov modeling with transition probability 
analysis (Jones 1981), Mathews' melody interpola- 
tion method (Mathews and Rosler 1968), and Cope's 
EMI system (Cope 1987) can all be placed in this 
category. However, the PDP computational para- 
digm provides a single powerful unifying approach 
within which to formulate a variety of algorithmic 
composition methods of this type. These new learn- 
ing methods combine many of the features of the 
techniques listed above and add a variety of new ca- 
pabilities. Perhaps most importantly, though, they 
yield different and interesting musical results. 

This paper presents a particular type of PDP 
network for music composition applications. Vari- 
ous issues are discussed in designing the network, 
choosing the music representation used, training 
the network, and using it for composition. Com- 
parisons are made to previous methods of algo- 
rithmic composition, and examples of the net- 
work's output are presented. This paper is intended 
to provide an indication of the power and range of 
PDP methods for algorithmic composition and to 
encourage others to begin exploring this new ap- 
proach. Hence, rather than merely presenting a 
reduced compositional technique, alternative ap- 
proaches and tangential ideas are included through- 
out as points of departure for further efforts. 

A Network for Learning Musical Structure 

Our new approach to algorithmic composition is 
first to create a network that can learn certain as- 
pects of musical structure, second to give the net- 
work a selection of musical examples from which 
to learn those structural aspects, and third to let 
the network use what it has learned to construct 
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Creation by Refinement
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The Old Emperor Old Clothes
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The Old Emperor Old Clothes (Neural Networks)
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• Single Hidden Layer Neural Network

• Hand Made

• Technical Limitations

• Slow CPU

• Small memory

• Few Examples
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First Experiments in Using Artificial Neural Networks
for Music Generation
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Todd’s Architecture Variation [Todd, 1989]
Fig. 1. A network design 
which can learn to associ- 
ate time windows (e.g. 
measures) in a piece of 
music with the following 
time windows. Here, one 
measure as input produces 
the following measure as 

output. Circles represent 
individual units, lines rep- 
resent directed connec- 
tions between units, and 
arrows indicate the flow of 
activation through the net- 
work. Not all units or con- 
nections are shown. 

new pieces of music. We can satisfy the first step 
by designing a network that can exactly reproduce 
a given set of musical examples, because being able 
to reproduce the examples requires that the net- 
work has learned a great deal about their structure. 

A network design that meets this music learning 
goal has been described in a previous paper by this 
authQr (Todd 1988). This network has been applied 
to both the task of algorithmic composition and the 
psychological modeling of certain aspects of human 
musical performance, such as tonal expectation 
(Bharucha and Todd 1989). This design is presented 
here. As in the original paper, I will restrict the mu- 
sical domain to the relatively simple class of mono- 
phonic melodies. This restriction simplifies the 
nature of the network by avoiding certain problems 
associated with the representation of polyphony, 
which will be indicated later. However, the mono- 
phonic domain remains musically realistic and in- 
teresting, as the examples will show. 

Network Design 

time window N+ 1 

t Output 
r' . . . 

Input 

time window N 

Since music is fundamentally a temporal process, 
the first consideration in designing a network to 
learn melodies is how to represent time. One way 
time may be represented is by standard musical no- 
tation translated into an ordered spatial dimension. 
Thus, the common staff represents time flowing 
from left to right, marked off at regular intervals by 
measure bars. Music could be represented in a simi- 
lar fashion in a PDP network, with a large chunk of 
time being processed simultaneously, in parallel, 
with different locations in time captured by differ- 
ent positions of processing units in the network. In 
the limiting case, the entire melody could be pre- 
sented to the network simultaneously; alterna- 
tively, and requiring fewer input units, a sliding 
window of successive time-periods of fixed size 
could be used. This windowed approach is common 
in speech applications of various types, as in the 
NetTalk word-to-speech network (Sejnowski and 
Rosenberg 1987) and various phoneme recognition 
systems (Waibel et al. 1987). 

In essence, the time-as-spatial-position represen- 
tation converts the problem of learning music into 

the problem of learning spatial patterns. For ex- 
ample, learning a melody may consist of learning to 
associate each measure of the melody with the next 
one, as illustrated in Fig. 1. Thus when a particular 
measure is presented as the input to the network, 
the following measure will be produced as output. 
Learning to perform such pattern association is 
something at which PDP networks are quite good. 
Furthermore, networks are able to generalize to 
new patterns they have not previously learned, pro- 
ducing reasonable output in those cases as well. 
Thus, a new measure of music could be given as 
the input to a trained network, and it would pro- 
duce as output its best guess at what would be a 
reasonable following measure. This generalizing be- 
havior is the primary motivation for using PDP net- 
works in a compositional context, since what we 
are interested in is exactly the generation of reason- 
able musical patterns in new situations. 

While the spatial-position representation of time 
may be acceptable, it seems more intuitive to treat 
music as a sequential phenomenon, with notes 

Computer Music Journal 28 

Fig. 2. A sequential net- 
work design which can 
learn to produce a se- 
quence of notes, using a 
memory of the notes al- 
ready produced. This 

memory is provided by the 
feedback connections 
shown, which channel 
produced notes back into 
the network. 

noteN N 

note N+ 1 

note N+2 + 

t Output 

feedback 

being produced one after another in succession. 
This view calls for the use of a sequential network, 
which learns to produce a sequence of single notes 
rather than a set of notes simultaneously. In this 
case, time is represented by the relative position of 
a note in the sequence, rather than the spatial posi- 
tion of a note in a window of units. Where net- 
works utilizing a spatial representation of time 
learn to associate a successive chunk of time with 
the previous chunk, sequential networks learn to 
produce the next note in a sequence based on some 
memory of past notes in the sequence. Thus, some 
memory of the past is needed in a sequential net- 
work, and this is provided by some sort of feedback 
connections that cycle current network activity 
back into the network for later use, as can be seen 
in Fig. 2. 

The learning phases of these two types of net- 
works are very similar-both learn to associate 
certain output patterns with certain inputs by ad- 
justing the weights on connections in the network. 
But their operation during production of melodies 
is quite different. Basically, the windowed-time pat- 
tern associator network produces a static output 
given its input: one window of time in produces 
one window of time out. The sequential network, 
on the other hand, cycles repeatedly to yield a se- 
quence of successively produced outputs. Each of 
these outputs further influences the production of 
later outputs in the sequence via the network's 
feedback connections and its generalizing ability. 
This ongoing dynamic behavior has great implica- 
tions for the sorts of sequences the network will 
produce, as will be seen later in this article. 

Actually, the windowed-time and sequential-time 
approaches are not contradictory and may be com- 
bined to advantage. A sequential network that pro- 
duces a sequence of time windows, rather than 
merely single notes, would learn a different set of 
associations and so make different generalizations 
during the composition phase. For the current dis- 
cussion, though, a standard, single-event output se- 
quential network design of the type first proposed 
by Jordan (1986a) has been used. A network of this 
type can learn to reproduce several monophonic 
melodies, thus capturing the important structural 
characteristics of a collection of pieces simulta- 
neously. This makes it an ideal candidate for our 
purposes. 

Jordan's sequential network design is essentially 
a typical, three-layer, feedforward network (Dolson 
1989) with some modifications mostly in the first 
(input) layer, as shown in Fig. 3. One set of units in 
the first layer, called the plan units, indicate which 
sequence (of several possibilities) is being learned 
or produced. The units do this by having a fixed set 
of activations-the plan-turned on for the dura- 
tion of the sequence. In effect the plan tells the 
network what to do by designating or naming the 
particular sequence being learned or produced. 

The context units (also called state units) make 
up the remainder of the first layer. These units are 
so named because they maintain the memory of the 
sequence produced so far, which is the current con- 
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for both output and con- 
text; context units also 
have self-feedback connec- 
tions. Each network out- 
put indicates the pitch at 
a certain time slice in the 
melody. 

t 

Context 
(memory of melody so far) 

text or state that the network uses to produce the 
next element in the sequence. Each successive out- 
put of the network is entered into this memory by 
the feedback connections indicated from the output 
units to the context units. 

A memory of more than just the single previous 
output is kept by having a self-feedback connection 
on each individual context unit, as shown in Fig. 3. 
These connections have a strength (weight) of less 
than 1.0, so that each context unit computes an 
exponentially decreasing sum of all of its previous 
inputs, which are the network's outputs. For ex- 
ample, if the self-feedback strength were 0.8, then a 
unit's memory would decrease proportionally by 
the amounts 0.8, 0.64, 0.51, 0.41, etc., as long as 
nothing new were entered into its memory. This 
connection strength cannot be greater than 1.0 or 
the activation values of the context units would ex- 
plode exponentially. 

The context units and plan units are all fully in- 
terconnected by a set of learned, weighted connec- 
tions to the next layer of units, the hidden units. 
The hidden units are so named because they are 
neither at the network's input nor output, and so 

are in some sense buried inside the network. The 
hidden units combine the weighted information 
from the (fixed) plan units and the (evolving) con- 
text units, processing it via their logistic activa- 
tion functions (Dolson 1989). They then pass on 
this processed information through the final set of 
weights to the output units. The output units then 
determine what the network will produce as the 
next element in the sequence. Each successive out- 
put is also finally passed along the feedback con- 
nections back to the context units, where they are 
added into the changing context. This in turn en- 
ables the computation of the following element in 
the sequence, and the cycle repeats. 

The actual number of the various types of units 
used in the network depends on several factors. The 
number of plan units must be sufficient to specify 
different plans for all the different sequences to be 
learned. For example, we might want to use plans 
that have only one plan unit on at a time (i.e., with 
an activation of 1.0), while all the rest of the plan 
units are off (i.e., they have activations of 0.0). The 
particular plan unit that is on, for example the third 
or the fifth, specifies the sequence being processed 
(i.e., sequence number 3 or number 5). This type of 
plan is known as a localist representation, because 
each unit represents an entire entity (here an entire 
sequence) locally, by itself. If we wanted to learn N 
sequences for example, we would need N plan units 
to specify all of them in this way. On the other 
hand, a binary-coded plan representation would be 
more compact: in this case, we would need only 
log2 N plan units to create N different plans. Thus 
plan 011 would specify sequence number 4 out of 8 
possible, starting with 000. This is a distributed 
type of representation, because each entity is repre- 
sented by a pattern of activation spread over several 
units at once. 

The number of output units in the network de- 
pends on the representation of the sequence ele- 
ments used, so it cannot be specified until this 
representation is settled. The number of context 
units depends on the type of memory desired. We 
will see below that having an equal number of out- 
put units and context units is useful. Finally, the 
number of hidden units depends on what the net- 
work must learn and cannot be exactly specified. If 
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Fig. 3. The sequential net- 
work design used for com- 
positional purposes in this 
paper. The current musical 
representation requires 
note-begin (nb) and pitch 
(D4-C6) units, as shown 

time slice N 

I 

30 

[Todd, 1988]

Feedforward architecture
Iterative generation

Recurrent architecture
Iterative generation

Recurrent + Conditioning architecture
Iterative generation
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Todd’s Conditioned Generation
Fig. 4. Network output 
using extrapolation from a 
single melody. In each 
case, both piano-roll-style 
output and common-prac- 
tice music notation are 
shown. Network outputs 

for the first 34 time-slices 
are shown, with row 0 
(bottom row) correspond- 
ing to the note-begin unit, 
and rows 1 - 14 corre- 
sponding to the pitch 
units, D4-C6. A black bar 

indicates the unit is on. 
Where the network output 
goes into a fixed loop, this 
is indicated by repeat bars 
in the music notation. 
(a) Melody 1, which the 
network is originally 

trained to produce with a 
plan of 1.0. (b) Extrapola- 
tion output using a plan of 
0.0. (c) Extrapolation out- 
put using a plan of 2.0. (d) 
Extrapolation output using 
a plan of 3.0. 
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similarity of common pitch movement patterns in 
different keys. 

Duration 

The duration of notes in the melodic sequences 
must also be represented. As with the pitch repre- 
sentation, two clear alternatives present them- 
selves. First, the duration could be specified in a 
separate pool of output (and context) units, along- 
side the pitch output units. The units could code 

for note duration in a localist fashion, with one 
unit designating a quarter-note, another a dotted 

eighth-note, etc. Or they could use a distributed 

representation, with for instance the number of 
units "on" (activation 1.0) representing the dura- 
tion of the current note in sixteenth-notes. With 
the localist representation, the corresponding con- 
text units would hold a memory of the lengths of 
notes played recently in the melody; in the dis- 
tributed case, the context units would be harder to 

analyze. 
Alternatively, duration can be removed from ex- 

plicit representation at the output units. Instead, 
the melody could be divided into equally spaced 
time slices of some fixed length, and each output in 
the sequence would correspond to the pitch during 
one time slice. Duration would then be captured by 
the number of successive outputs and hence the 
number of time slices a particular pitch stays on. 
This is equivalent to thinking of a melody as a 
function of pitch versus time (as in piano-roll nota- 
tion), with the network giving the pitch value of 
this function at equally spaced intervals of time. 
I am using this time-slice representation for dura- 
tion at present, in part because it simplifies the net- 
work's output-no separate note-duration units are 
needed. In addition, this representation allows the 
context units to capture potentially useful pitch- 
length information, as will be indicated below. The 
form of this representation can be seen in the ex- 
ample network output in Figs. 4-6. 

The specific fixed length of the time slices to use 
should be the greatest common factor of the dura- 
tions of all the notes in the melodies to be learned. 
This ensures that the duration of every note will be 

represented properly with a whole number of time 
slices. For example, if our network were only to 
learn the melody A-B-C with corresponding dura- 
tions quarter-note, eighth-note, and dotted quarter- 
note, we would use time slices of eighth-note dura- 
tion. The sequence the network would learn would 
then be {A, A, B, C, C, C}. 

With this duration representation, the context 
units now not only capture what pitches were used 

recently in the melody, but also for how long. This 
is because the longer a given note's duration is, the 
more time slices its pitch will appear at the output, 
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Extrapolation Interpolation

Original
melody

(plan 1.0)

New
melody

(plan 0.0)

New
melody

(plan 2.0)

Original
melodyA
(plan 0.0)

Original
melodyB
(plan 1.0)

New
melodyA-B
(plan 0.5)

Fig. 5. Network output 
using interpolation be- 
tween two melodies. 
(a) Melody 1, trained with 
plan 1.0. (b) Interpolation 
output using a plan of 0.8. 
(c) Interpolation output 
using a plan of 0.7. (d) In- 

(a) 

terpolation output using a 
plan of 0.5; an additional 
34 successive time-slices 
(68 total) are shown to 
indicate longer-term be- 
havior. (e) Interpolation 
output using a plan of 0.2. 
(f) Melody 2, trained with 
plan 0.0. 

Fig. 6. Network output 
using altered melody 
space. (a) Melody 3, 
trained using plan vector 
(0.0, 1.0). (b) Melody 4, 
trained using plan vector 
(1.0, 1.0). (c) Interpolation 
output between melodies 
1 and 2, incorporating 
training on 3 and 4, using 

plan vector (0.5, 0.0). (d) 
Interpolation output be- 
tween melodies 1 and 2, 
trained with 8 hidden 
units, using a plan of 0.5. 
(e) Interpolation output 
between melodies 1 and 2, 
retrained with 15 hidden 
units, using a plan of 0.5. 
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Todd’s Architecture Prospects/Addendum (1/2) [Todd, 1989]

• Structure

• Hierarchy

• Multiple Time/Clocks
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Todd’s Architecture Prospects/Addendum (2/2) [Todd, 1989]

• Precursor of

• Hierarchy
– Ex: MusicVAE [Roberts et al., 2018]

• Multiple Time/Clocks
– Ex: Clockwork RNN [Koutnik et al., 2014]

– SampleRNN [Mehri et al., 2017]
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A Clockwork RNN

Figure 1. CW-RNN architecture is similar to a simple RNN with an input, output and hidden layer. The hidden layer is partitioned into g
modules each with its own clock rate. Within each module the neurons are fully interconnected. Neurons in faster module i are connected
to neurons in a slower module j only if a clock period Ti < Tj .

2. Related Work
Contributions to the sequence modeling and recognition
that are relevant to CW-RNN are introduced in this section.
The primary focus is on RNN extensions that deal with the
problem of bridging long time lags.

One model that is similar in spirit to our approach is the
NARX RNN1 (Lin et al., 1996). But instead of simplifying
the network, it introduces an additional sets of recurrent
connections with time lags of 2,3..k time steps. These ad-
ditional connections help to bridge long time lags, but in-
troduce many additional parameters that make NARX RNN
training more difficult and run k times slower.

Long Short-Term Memory (LSTM; Hochreiter & Schmid-
huber, 1997) uses a specialized architecture that allows in-
formation to be stored in a linear unit called a constant error

carousel (CEC) indefinitely. The cell containing the CEC
has a set of multiplicative units (gates) connected to other
cells that regulate when new information enters the CEC
(input gate), when the activation of the CEC is output to the
rest of the network (output gate), and when the activation
decays or is ”forgotten” (forget gate). These networks have
been very successful recently in speech and handwriting
recognition (Graves et al., 2005; 2009; Sak et al., 2014).

Stacking LSTMs into several layers (Fernandez et al., 2007;
Graves & Schmidhuber, 2009) aims for hierarchical se-
quence processing. Such a hierarchy, equipped with Connec-

1NARX stands for Non-linear Auto-Regressive model with
eXogeneous inputs

tionist Temporal Classification (CTC; Graves et al., 2006),
performs simultaneous segmentation and recognition of se-
quences. Its deep variant currently holds the state-of-the-
art result in phoneme recognition on the TIMIT database
(Graves et al., 2013).

Temporal Transition Hierarchy (TTH; Ring, 1993) incre-
mentally adds high-order neurons in order to build a memory
that is used to disambiguate an input at the current time step.
This approach can, in principle, bridge time intervals of any
length, but with proportionally growing network size. The
model was recently improved by adding recurrent connec-
tions (Ring, 2011) that prevent it from bloating by reusing
the high-level nodes through the recurrent connections.

One of the earliest attempts to enable RNNs to handle
long-term dependencies is the Reduced Description Net-
work (Mozer, 1992; 1994). It uses leaky neurons whose
activation changes only a bit in response to its inputs. This
technique was recently picked up by Echo State Networks
(ESN; Jaeger, 2002).

A similar technique has been used by Sutskever & Hinton
(2010) to solve some serial recall tasks. These Temporal-
Kernel RNNs add a connection from each neuron to itself
that has a weight that decays exponentially in time. This
is implemented in a way that can be computed efficiently,
however, its performance is still inferior to LSTM.

Evolino (Schmidhuber et al., 2005; 2007) feeds the input
to an RNN (which can be e.g. LSTM to cope with long
time lags) and then transforms the RNN outputs to the target
sequences via a optimal linear mapping, that is computed
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Lewis’ Creation by Refinement (1/4) [Lewis, 1988]

• Training on 30 Manually Generated 5-Note Melodies
• 7 Possible Notes (from C to B, without alteration)
• Well Formed

– Possible Intervals:
» Unison, 3rd, 5th,
» Scale Degree Stepwise Motion

• Poorly Formed
– Excessive Motion or Excessive Repetition

• Binary Classification Training
– Well or Poorly Formed
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Fig. 2. 

Ynrnplcs o f  ‘‘\I e11 formed” melodic figures used in training (left) 
and f iguwh generated by creation by refinement (right). 
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Lewis’ Network Architecture

50

…
Input layer

5 * 7 =
35 nodes

1st Hidden layer
105 nodes

2nd Hidden layer
35 nodes

Output layer
1 node

C
D
E
F
G
A
B

Well formed ?
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Lewis’ Creation by Refinement (1/6)

51

…

C
D
E
F
G
A
B

Well formed

Initial
Random Values
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Lewis’ Creation by Refinement (2/6)

52

…

C
D
E
F
G
A
B

Well formed

Values

Input Values are Incrementally Manipulated
Under the Control of a Gradient Descent on Error in Predicted Well Formed
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Lewis’ Creation by Refinement (3/6)
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Lewis’ Creation by Refinement (4/6)

Ex. of Melodies Created by Refinement

• The Network Learned Preference for Stepwise and Triadic Motion
Fig. 2. 

Ynrnplcs o f  ‘‘\I e11 formed” melodic figures used in training (left) 
and f iguwh generated by creation by refinement (right). 
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• Attention

• Hierarchy

Lewis’ Creation by Refinement (5/6)

Ex. of Melodies Created by Hierarchical Refinement
(ABCD -> ABxCD scheme)
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• Reinforcement

Lewis’ Creation by Refinement (6/6)

Not Reinforcement learning

Created Melodies which are Liked are Added to the Training Set

56



Deep Learning – Music Generation – 2019Jean-Pierre Briot

Lewis’ Creation by Refinement Pioneering (1/3)

• Precursor of
• Gradient Descent Input Manipulation [Briot et al., 2017]
• Ex: DeepHear [Sun, 2016]

– Melody Consonant Accompaniment Creation

57

Input Bottleneck Layer

Similarity

Reference MelodyOutput

Input Manipulation

Generation

https://fephsun.github.io/2015/09/01/neural-music.html#

https://fephsun.github.io/2015/09/01/neural-music.html
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Lewis’ Creation by Refinement Pioneering (2/3)

• Precursor of

• Gradient Ascent Input Manipulation [Briot et al., 2017]

• Ex: DeepDream [Mordvintsev et al. 2015]
– Motif Detector Neuron Activation Maximization

58

Activation

Input Manipulation
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Lewis’ Creation by Refinement Pioneering (3/3)

59

Initial Image Deep Dream Image
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Structure Imposition (1/2) [Lattner et al., 2016]

60

• Constrained sampling, C-RBM [Lattner et al., 2016]

• Convolutional Restricted Boltzmann Machine (RBM)

• Combination of: 
– Input Manipulation guided by Gradient Descent of current sample

» to impose Higher-Level Structure/Constraints:
• Structure (Structure Repetition, Ex: AABA), via Self-Similarity Matrix
• Tonality, via Similarity of Distribution of Pitch-Classes
• Meter (Rhythm Pattern/Signature and Beat Accent)

– Sampling Control, by Selective Gibbs sampling (SGS)
» at a Selected Low-Level (subset of variables)
» to realign selectively the sample to the learnt distribution

– Alternate IP/GD and SGS, controlled by Simulated Annealing

– But not exact as, e.g., Markov Constraints [Pachet & Roy, 2011]
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Structure Imposition

61

– Structure (Repetition Structure, Ex: AABA)
» Self-Similarity Matrix
» For each Music Slice

– Tonality, via Similarity of Distribution of Pitch-Classes
» Key Estimation Vectors over Time

– Meter
» Duration and Accent Patterns (ex: on 1st and 3rd Beats)
» Via Relative Occurrence of Note Onsets

12 Minor Keys
12 Major Keys
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C-RBM [Lattner et al., 2016]

62

https://soundcloud.com/pmgrbm

Input
manipulation

Sampling

Sample Structural Reference

Both Manipulation and Sampling of Input
because RBM’s "Output" is its Input

https://soundcloud.com/pmgrbm
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C-RBM Examples

• RNN-RBM Sample

• Unconstrained Sample

• Template Piece

• Constrained Sample

https://soundcloud.com/pmgrbm
63

https://soundcloud.com/pmgrbm
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Mozer’s Rich Representation Model [Mozer, 1994]

[Mozer, 2004]

Note/Harmony

Duration/Rhythm

64

Neural Network Music Composition 257 

Pitch Height Chroma Circle Circle of Fifths 

Figure 2. Shepard's (1982) pitch representation. 

scales-C, D, E, F, G, A and %are grouped together on the CF. The most 
common pentatonic keys are similarly localized. Second, and perhaps more critical, 
the C F  can explain the subjective equality of the intervals of the diatonic scale. To  
elaborate, Shepard points out that people tend to hear the successive steps of the 
major scale as equivalent, although with respect to log frequency, some of the 
intervals are only half as large as others. For example, in C major, the E-F and B-C 
steps are half tones apart (minor seconds) while all others are a whole tone apart 
(major seconds). The combination of the PH and the C F  permits a representation 
in which the distance between all major and minor seconds is the same. This is 
achieved by using a scale ratio of approximately 3: 1 for the C C  relative to the CF. 

One desirable property of the overall PHCCCF representation is that distances 
between pitches are invariant under transposition. Consider any two pitches, say, 
D2 and G#4. Transposing the pitches preserves the distance between them in the 
PHCCCF representation. Thus, the distance from D2 to W is the same as fkom 
E2 to AM, from D l  to G#3, and so forth. See Bharucha (1991) for a further 
discussion of the psychological issues involved in the representation of musical 
pitch. 

The relative importance of the PH, CC and C F  components can be varied by 
adjusting the diameters of the CC and the CF. For example, if the two circles have 
the same diameter, then, in terms of the CC and C F  components, the distance 
between C and G is the same as the distance between C and B. This is because B 
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Table 111. PHCCCF representation for selected pitches 

Pitch 

C 1 
i3 1 
G2 
C3 
M3 
E3 
A4 
C5 
Rest 

information about the octave; information about the pitch within an octave can be 
gleaned from the values on the other dimensions. Consequently, a precise response 
of the PH unit is not crucial. Its activity is scaled to range from -9.798 for C1 to 
+9.798 for C5. This scaling achieves the desired property previously described that 
the distance in the CC or C F  component between pitches on opposite sides of the 
circle equals the distance between pitches one octave apart in the PH component.' 

The PHCCCF representation consists of 13 units altogether. Sample activity 
patterns for some pitches are shown in Table 111. Rests (silence) are assigned a 
unique code, listed in the last row of the table, that is maximally different from all 
pitches. The end of a piece is coded by a series of rests. 

As with any distributed representation, there are limitations as to how many and 
which pitches can be represented simultaneously. The issue arises because the NND 
layer needs to be able to encode a set of alternatives, not just a single pitch. If, say, 
Al,  0 2  and E2 are equally likely as the next note, the NND layer must indicate all 
three possibilities. T o  do so, it must produce an activity vector that is nearer to PA,, 
p ~ z  and PEZ than to other possibilities. The point in PHCCCF space that is 
simultaneously closest to the three pitches is simply the average vector, (PA, + PDZ 

+ p~2)/3. Table IV shows the pitches nearest to the average vector. As hoped for, 
Al, D2 and E2 are the nearest three. This is not always the case, though. Table V 
shows the pitches nearest to the average vector which represents the set {Al, D2, 
D#2}. This illustrates the fact that certain clusters of pitches are more compact in 
the PHCCCF space than others. The PHCCCF representation not only introduces 
a similarity structure over the pitches, but also a limit on the combinations of pitches 

Table IV. Distance from representation of 
{Al,DZ,E2} to nearest 10 pitches 

Rank Pitch Distance 
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Neural Network Music composition 26 1 

Figure 3. The characterization of note durations in terms of twelfths of a beat. The 
fractions shown correspond to the duration of a single note of a given type. 

result in similar representations for related durations. For example, eighth-notes 
and quarter-notes (the former half the duration of the latter) share the same value 
on the 114 beat circle; eighth-note triplets and quarter-note triplets share the same 
value on the 113 beat circle; and quarter-notes and half-notes share the same values 
on both the 114 and 113 beat circles. 

This five-dimensional space is encoded directly by five units in CONCERT. It 
was not necessary to map the 113 or 114 beat circle into a higher-dimensional binary 
space, as was done for the CC and the CF (Table II), because the beat circles are 
sparsely populated. Only two or three values need to be distinguished along the x 
and ydimensions of each circle, which is well within the capacity of a single unit. 

Several alternative approaches to rhythm representation are worthy of mention. 
A straightforward approach is to represent time implicitly by presenting each pitch 
on the input layer for a number of time steps proportional to the duration. Thus, 
a half-note might appear for 24 time steps, a quarter-note for 12, an eighth-note 
for 6. Todd (1989) followed an approach of this sort, although he did not quantize 
time so finely. He included an additional unit to indicate whether a pitch was 
articulated or tied to the previous pitch. This allowed for the distinction between, 
say, two successive quarter-notes of the same pitch and a single half-note. The 
drawback of this implicit representation of duration is that time must be sliced into 

Duration Height 113 Beat Circle 114 Beat Circle 

Figure 4. The duration representation used in CONCERT. 

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
5:

55
 1

7 
O

ct
ob

er
 2

01
4 



Deep Learning – Music Generation – 2019Jean-Pierre Briot

From Neural Networks to Deep Learning

65
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Neural Networks Evolution

66

20202000

Perceptron

20101990198019701960

Perceptrons Backpropagation Pre-Training

20061957 1969 1986 2012

Imagenet

1995

SVM

1997

LSTM
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History: From Perceptron to Artificial Neural Networks
to Deep Learning (1/4)

67

Perceptron
[Rosenblatt 1957]

PDP (Books)
[Rumelhart et al. 1986]

Perceptrons (Book)
[Minsky & Papert 1969]

Linear Separable only
XOR counter example

Multi-layer networks
Backpropagation

0

01

1
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Linear vs Non Linear Decision Boundary

x1

x2

x1

x2

x1

x2

• Argument (XOR) used by [Minsky & Papert 1969] to criticize Perceptrons 
[Rosenblatt 1957] (and advocate Symbolic Artificial Intelligence)

• This stopped research on Perceptrons/Neural Networks for a long while
– until Hidden Layers and Backpropagation or/and Kernel Trick (see later) 

• Linear

• Non Linear

XOR

68
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History: From Perceptron to Artificial Neural Networks
to Deep Learning (2/4)

69

Pre-Training [Hinton et al. 2006]
Layer-Wise Self-Supervised

Training/Initialization

ImageNet 2012 Image Recognition
Challenge Breakthrough

Difficulty to Efficiently Train
Networks with many Layers

Unstable Gradients

SVM [Vapnik 1963]
SVM + Kernel Trick
[Vapnik et al. 1992]

Nice Model and
Optimized Implementation

Margin Optimization
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History: From Perceptron to Artificial Neural Networks
to Deep Learning (3/4)

70

Convolutional Networks
[Le Cun et al. 1998 ]

Equivariance (to translation)
& Invariance (to small transformations)

Long Short-Term Memory
(LSTM)

[Hochreiter &
Schmidhüber 1997]

Recurrent Neural Networks (RNN)
(1986)

Temporal Invariance

Gradient Vanishing
or Explosion (1991)
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History: From Perceptron to Artificial Neural Networks
to Deep Learning (4/4)

71

Affordable Efficient 
Parallel Processing

(Graphic Cards
GPU)

Massive Data
Available

+
Efficient Implementation

Platforms

+
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Power Increase

• Brute Force

• Hypervitamined Brute Force

Loss Minimization

GPUs

PyTorchTensorFlow 72
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Why Deep ?

73

• More Complex Models
• Learns better Complex Functions
• Hierarchical Features/Abstractions
• No Need for Handcrafted Features

– (Automatically Extracted)

Distributed Representations

End-to-End Architecture
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Why Deep ?

• Theorem [Eldan & Shamir 2016]
– There is a simple radial function on Rd, expressible by a 3-layer net, but 

which cannot be approximated by any 2-layer net to more than a constant 
accuracy unless its width is exponential on the dimension d

– Depth vs/and Width

74

Radial function = Function whose value at each point
depends only on distance between point and origin
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Very Deep Learning

75

GoogLeNet (2014) ResNet (2015)

(Very) Deep Networks

Upto 152 Layers !

New Techniques (Tricks ?!) e.g.,
Batch Normalization [Ioffe & Szegedy, 2015]

Deep Residual Learning [He et al., 2015]
Replaced Pre-Training (less in vogue)
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The Groundbreaking Start of Deep Learning

76

Pre-Training [Hinton et al. 2006]
Layer-Wise Self-Supervised

Training/Initialization

ImageNet 2012 Image Recognition
Challenge Breakthrough
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WaveNet Audio End-to-End Generation [van den Oord et al., 2017]

• Van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., 
Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K., WaveNet: A 
Generative Model for Raw Audio, arXiv:1609.03499, December 2016.

• Waveform

• End to end architecture

77

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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Figure 5: Subjective preference scores (%) of speech samples between (top) two baselines, (middle)
two WaveNets, and (bottom) the best baseline and WaveNet. Note that LSTM and Concat cor-
respond to LSTM-RNN-based statistical parametric and HMM-driven unit selection concatenative
baseline synthesizers, and WaveNet (L) and WaveNet (L+F) correspond to the WaveNet condi-
tioned on linguistic features only and that conditioned on both linguistic features and logF0 values.

7

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3

[van den Oord, 2016]
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New Architectures

• New Architectures and Mechanisms

• RNN Encoder Decoder

• Variational Autoencoders

• Generative Adversarial Networks

• Transformer

• Attention Mechanism
• …

[Bechberger, 2018]

[O’Reilly Media, 2018]

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

[Vaswani et al., 2017]

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4
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Artificial Intelligence and Machine Learning

79
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Symbolic vs Connexionist AI – History

[Cardon et al., 2018]
80
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Symbolic vs Cybernetics – History

[Cardon et al. 2018] 81

Cybernetics
Autonomous control
Corrective feedback
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Artificial Intelligence vs Intelligence Augmentation – History

[Cardon et al. 2018]

Mouse
pre-PC
Hypertext

Engelbart’s Augmentation
Research Center
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Machine Learning and Artificial Intelligence

• Various Forms of Machine Learning

• Statistical
• Neural Networks, Bayesian Networks, Clustering…

• Decision
• Reinforcement learning

• Symbolic – Learning Concepts from Examples
• Inductive Logic Programming (ILP)

• Learning and Adapting from Cases
• Case-Based Reasoning

83
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Machine Learning and Artificial Intelligence

• Machine Learning is Part of Artificial Intelligence Techniques
But also:
• Reasoning
• Planning
• Knowledge Representation
• User Modeling and Interaction
• Collaboration (Multi-Agent Systems)

• Natural Language Processing
• Dialogue
• Speech Processing

• Decision
• Game Theory
• Optimization
• Robotics

84
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Machine Learning and Artificial Intelligence

• Backfire (Irony) of History
• In 1960, Minsky and Papert founded AI (Artificial

Intelligence) based on Concepts, Symbols, Logic, 
Reasoning…, Against Cybernetics (Feedback) and 
Connexionism (Neural Networks)

• In 1969, they "Killed" Connexionism/Neural Networks
(Sound Critic of Perceptron)

• In 2006, Start of Deep Learning
• Now, AI is synonym of Deep Learning
• When Actually, Neural Networks are somehow based on 

Statistical (Correlation) Brute Force
85
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Terminology

Big Data

Linear Regression

Problem Solving

Reasoning

Search
Planification

Coordination

Human Machine Interaction

Prediction

Classification

Decision

Data Analytics

Data Mining

Statistics

Data Science

Reinforcement Learning

Neural Networks

Bayesian Networks

Deep LearningKnowledge Representation

Adaptation

Pattern Recognition

Visualization

Data Management
and Processing

Clusterization
Machine Learning

Artificial Intelligence Statistical Learning

Logistic Regression

Support Vector Machines

Optimization

Learning

Concept Learning

Case-Based Reasoning
Inductive Logic Programming
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Why Using Computer and Machine Learning
(for Creating Music)?

87
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Why Using Computer for Music

• Bad Reasons (Fears)

– Lead human musicians to unemployment

– Lower the quality of music J

• Good reasons

– Facilitate storing, indexing, delivering and sharing of music (MIDI, MP3, Spotify…)

– New instruments and interaction (Synthesizers, Interactive music performances…)

– New sounds (Synthesizers and Signal processing)

– Analysis tools and algorithms (Spectrum, Patterns Discovery…)

– Initiation and Education (Band in the Box, Garage Band…)

• Production

– Partially automate tasks (Ex: Mixing, etc.)

• Composition, Analysis and Arrangement

– Algorithmic composition

– Harmonization

– Analysis

– …
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Why Using Computer (and Machine Learning) for Music

• Vast Associative Memory

– More systematic than Human memory

• Representation of Musical pieces, Style, Patterns…

• Associations and Correlations

• Knowledge (Theory, Rules, Heuristics…)

• Can Help Human musicians

• Human musicians rarely compose from scratch – They borrow from others

– Consciously

» Plagiat, Citation…

– Unconsciously

» Influence

– Recombinations

– Historical Evolution/Extension

» Modal monophonic -> Polyphonic (Counterpoint) -> Tonal Music (Harmony) -> Extended 
Harmony (Debussy, Jazz…)

– Ruptures (Dodecaphonism, Free Jazz, Punk…)

» Rare and often transient
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Some Preconcepts Against Deep Learning / AI

• No Emotion
– Create Emotion to the Human Target ?
– Or/And Internal Model of Emotion ?

• No Creativity
– Exploratory

» AlphaZero used successful strategies yet unconsidered
– Recombination

» Concept and Conjecture Discovery (ex: Numbers, Prime Numbers, 
Prime Numbers Decomposition) AM and Eurisko [Lenat, 1976; 1983]

» Style Transfer [Gatys et al., 2015]
– Paradigm Reformulation

» Ex: Quantum Physics, Algebraic Geometry, Dodecaphonism…
» More difficult

[Image: BBC]

[Bryson et al., 2004]

[Karras et al., 2018]

+ =
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Handcrafted vs Learnt Models

• Handcrafted

– Tedious

– Error-Prone

• Automatically Learnt (Induction)

– Markov Models

– Neural Models

• Style Automatic Learned from a Corpus (Composer, Form, Genre…)

– Melody

– Harmony

– Counterpoint

– Orchestration

– Production

• Machine Learning Techniques

– Neural Networks, Deep Learning, Reinforcement Learning

– (and other models/techniques, Ex: Markov Models)

91

Flow Machines [Pachet et al. 2012]
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Deep Learning Phylogenetics

Feedforward

Autoencoder (AE)

Recurrent (RNN)

Generative Adversarial Networks (GAN)

Long Short-Term Memory (LSTM)

Variational Autoencoder (VAE)

RNN Encoder Decoder

Creative Adversarial Networks (CAN)

Transformer

Reinforcement Learning

Convolutional

Deep Reinforcement Learning

RL-Tuner

Music VAE

Music Transformer

DeepHear

Restricted Boltzmann Machine (RBM) RNN-RBM

VRAE

C-RBM
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MidiNet

Performance RNN
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Deep Learning Phylogenetics

Generative Adversarial Networks (GAN)

Variational Autoencoder (VAE)

93

Generative Architectures
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Self-References for More Information

94

J.-P. Briot, G. Hadjeres, F.-D. Pachet, Deep Learning 
Techniques for Music Generation, Computational Synthesis
and Creative Systems Series, Springer, 2019.
https://www.springer.com/br/book/9783319701622

ArXiv version:
https://arxiv.org/abs/1709.01620

UNIRIO Course:
http://www-desir.lip6.fr/~briot/cours/unirio3/

https://www.springer.com/br/book/9783319701622
https://arxiv.org/abs/1709.01620
http://www-desir.lip6.fr/~briot/cours/unirio3/
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Survey/Analysis

95

Architecture

Representation

Strategy

Objective

4+1 dimensions

Challenge
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Objective

96

• Melody
– Monodic
– Polyphonic

• Polyphony (Multiple Voices/Tracks)

• Accompaniment
– Counterpoint

» Melody
» Melodies (Chorale)

– Chords

• Melody + Harmony/Chords

• Leadsheet
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Representation

97

• Signal
– Waveform

– Spectrum

• Symbolic
– MIDI
– Piano roll

– Text

– Chord EbMaj7/G

– Lead sheet
– Rhythm
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Architecture

98

• Feedforward

• Recurrent (RNN)
– Long Short-Term Memory (LSTM)

• Autoencoder
– Stacked Autoencoders

• Restricted Boltzmann Machine (RBM)

• Variational Autoencoder (VAE)

• Patterns
– Convolutional
– Conditioning
– Generative Adversarial Networks (GAN)

• Reinforcement Learning

• Refinement and Compound
– Ex: VRAE = Variational(Autoencoder(RNN, RNN) = Variational(RNN Encoder-

Decoder)
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Refined and Compound Architectures

99

• Composition
– Bidirectional RNN
– RNN-RBM

• Refinement
– Variational(Autoencoder) (VAE)

• Nested
– Stacked Autoencoder
– RNN Encoder-Decoder = Autoencoder(RNN, RNN)

• Pattern Instantiation
– C-RBM = Convolutional(RBM)
– C-RNN-GAN = GAN(RNN, RNN)

• Compound
– VRASH = Variational(Autoencoder(RNN, Conditioning(RNN, History))).
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Challenge

100

1. Ex Nihilo Generation
» vs Accompaniment (Need for Input)

2. Length Variability
» vs Fixed Length

3. Content Variability
» vs Determinism

4. Control
» ex: Tonality conformance, Maximum number of repeated notes…

5. Structure
6. Originality

» vs Conformance

7. Incrementality
» vs Single-step or Iterative Generation

8. Interactivity
» vs (Autistic) Automation

9. Explainability
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(Generation) Strategy

101

• Feedforward
– Single-Step Feedforward
– Iterative Feedforward
– Decoder Feedforward

• Conditioning

• Sampling

• Input Manipulation

• Adversarial

• Reinforcement

• Unit Selection [Bretan et al., 2016][Jaques et al., 2016]

[Mogren, 2016]

[Boulanger-Lewandowski et al., 2012]

[Yang et al., 2017]

[Sun, 2016]
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Generative Architectures

102
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Variational Autoencoder
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Autoencoder

• Symmetric Neural Network
• Trained with examples as input and output
• Hidden Layer will Learn a Compressed Representation at the Hidden

Layer (Latent Variables)
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Latent Variables
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    
















Very LatE120
PACHET/DINVERNO













A
5

13

B

21

29

A
37

45 





53





 CŒ„Š7 G13(“4) CŒ„Š7 G13(“4)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 D‹7 GŒ„Š7


G(#5)


 CŒ„Š7 E7(#9) FŒ„Š7

LAST TIME ONLY
B¨7 E¨Œ„Š7 A7 DŒ„Š7 E‹9




 F‹7 B¨7 F©‹7 B7 EŒ„Š7 C©‹7 D‹7 G7(#5)


 CŒ„Š7 A‹ B¨‹ E¨7 A¨Œ„Š7 F‹ F©‹ B7


BASS on G 

 EŒ„Š7 B¨7 E¨Œ„Š7 D7 GŒ„Š7 CŒ„Š7/G GŒ„Š7 D‹7 G7


  Rall 

 B7 EŒ„Š7 C©‹7 C‹7 BŒ„Š7 A¨Œ„Š7 EŒ„Š7(#11) E¨Œ„Š7

       

                 

                   

                  

                       

                 

                 

                    



Deep Learning – Music Generation – 2019Jean-Pierre Briot

Variational Autoencoder (VAE) [Kingman & Welling, 2014]

105

• Additional Constraint:
• Encoded representation (latent variables z) follows some prior probability

distribution p(z), usually, a Gaussian distribution (normal law)

• Reparameterization Trick

• The VAE decoder part will learn the relation between a Gaussian distribution 

of the latent variables and the learnt examples

• A VAE is able to learn a smooth latent space mapping to realistic examples

In order to optimize the KL divergence, we need to apply a

simple reparameterization trick: instead of the encoder

generating a vector of real values, it will generate a vector of

means and a vector of standard deviations.

This lets us calculate KL divergence as follows:

When we're calculating loss for the decoder network, we can

just sample from the standard deviations and add the mean,

and use that as our latent vector:

latent_loss	=	KL-Divergence(latent_variable,	unit_gaussian)		
loss	=	generation_loss	+	latent_loss		

#	z_mean	and	z_stddev	are	two	vectors	generated	by	encoder	network
latent_loss	=	0.5	*	tf.reduce_sum(tf.square(z_mean)	+	tf.square

samples	=	tf.random_normal([batchsize,n_z],0,1,dtype=tf.float32
sampled_z	=	z_mean	+	(z_stddev	*	samples)		

[Frans, 2016]
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Representation/Manifold Learning

3D Earth 2D Map
106

CHAPTER 5. MACHINE LEARNING BASICS

5.11.3 Manifold Learning

AG BFIHKMaGM <HG<>IM NG=>KERBG@ FaGR B=>aL BG Fa<ABG> E>aKGBG@ BL MAaM H? a

FaGB?HE=.

A manifold BL a <HGG><M>=�K>@BHG. MaMA>FaMB<aEER,�BM�BL a L>M H? IHBGML,
aLLH<BaM>= PBMA a G>B@A;HKAHH= aKHNG= >a<A IHBGM. FKHF aGR @BO>G IHBGM, MA>
FaGB?HE= EH<aEER aII>aKL MH ;> a EN<EB=>aG LIa<>. IG >O>KR=aR EB?>, P> >QI>KB>G<>
MA> LNK?a<> H? MA> PHKE= aL a 2-D IEaG>, ;NM BM BL BG ?a<M a LIA>KB<aE FaGB?HE= BG
3-D LIa<>.

TA> =>rGBMBHG H? a G>B@A;HKAHH= LNKKHNG=BG@ >a<A IHBGM BFIEB>L MA> >QBLM>G<>
H? MKaGL?HKFaMBHGL MAaM <aG ;> aIIEB>= MH FHO> HG MA> FaGB?HE= ?KHF HG> IHLBMBHG
MH a G>B@A;HKBG@ HG>. IG MA> >QaFIE> H? MA> PHKE=nL LNK?a<> aL a FaGB?HE=, HG> <aG
PaED GHKMA, LHNMA, >aLM, HK P>LM.

AEMAHN@A MA>K> BL a ?HKFaE FaMA>FaMB<aE F>aGBG@ MH MA> M>KF oFaGB?HE=,p BG

Fa<ABG> E>aKGBG@ BM M>G=L MH ;> NL>= FHK> EHHL>ER MH =>LB@GaM> a <HGG><M>= L>M
H? IHBGML MAaM <aG ;> aIIKHQBFaM>= P>EE ;R <HGLB=>KBG@ HGER a LFaEE GNF;>K H?
=>@K>>L H? ?K>>=HF, HK =BF>GLBHGL, >F;>==>= BG a AB@A>K-=BF>GLBHGaE LIa<>. Ea<A
=BF>GLBHG <HKK>LIHG=L MH a EH<aE =BK><MBHG H? OaKBaMBHG. S>> r@NK> ?HK aG5.11
>QaFIE> H? MKaBGBG@ =aMa ERBG@ G>aK a HG>-=BF>GLBHGaE FaGB?HE= >F;>==>= BG MPH-
=BF>GLBHGaE LIa<>. IG MA> <HGM>QM H? Fa<ABG> E>aKGBG@, P> aEEHP MA> =BF>GLBHGaEBMR
H? MA> FaGB?HE= MH OaKR ?KHF HG> IHBGM MH aGHMA>K.�TABL H?M>G AaII>GL PA>G a
FaGB?HE= BGM>KL><ML BML>E?. FHK >QaFIE>, a r@NK> >B@AM BL a FaGB?HE= MAaM AaL a LBG@E>
=BF>GLBHG BG FHLM IEa<>L ;NM MPH =BF>GLBHGL aM MA> BGM>KL><MBHG aM MA> <>GM>K.
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F?gKHe 5.11: DaJa IaCFBed fHEC a d?IJH?bKJ?ED ?D a JME-d?CeDI?EDaB IFace J>aJ ?I acJKaBBO
cEDceDJHaJed DeaH a EDe-d?CeDI?EDaB CaD?fEBd, B?Ae a JM?IJed IJH?Dg. T>e IEB?d B?De ?Dd?caJeI
J>e KDdeHBO?Dg CaD?fEBd J>aJ J>e BeaHDeH I>EKBd ?DfeH.
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Manifold :
Set of connected points

But can be approximated by
a smaller number of dimensions,
each dimension corresponding

to a local variation

In a high-dimensional space

Analogy:
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VAE MNIST [Keras/Cholet, 2016]

107
Label = (z1, z2)

digit1

digit2

784
512

2
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Variational Autoencoder

108

[Dykeman, 2016]
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Variational Autoencoder

109

Generation
by Exploring the Latent Space
and Decoding

[Dykeman, 2016]
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VAE MNIST [Keras/Cholet, 2016]
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16/04/2019 Building Autoencoders in Keras

https://blog.keras.io/building-autoencoders-in-keras.html 14/14

That�s it� If 4ou have suggestions for more topics to be covered in this post ¢or in future posts£� 4ou
can contact me on T2itter at ²fchollet�
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VAE Magic
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Label = (z1, z2)

digit1

digit2

784

512

2

How is it possible ?
Compress 784 variables into 2
and reconstruct the original ?
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VAE Magic Revealed
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VAE Magic Revealed
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Weights

Input Layer Output LayerHidden Layer
Latent Variables

Split/Extract between

• Common Data:
Weights

• Variable/Discriminative Data:
Latent Variables
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Variational Generation
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Exploration of the latent space with various operations to control/vary the 
generation of content

Ex:
• Translation
• Arbitrary path
• Interpolation (morphing) (between points)
• Averaging (of some points)
• Attribute arithmetic

– Addition or subtraction of an attribute vector capturing a given characteristic
– This attribute vector is computed as the average latent vector for a collection of 

examples sharing that attribute (characteristic)
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Attribute Arithmetic
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• (Characteristics) Attribute Arithmetic

– Addition or subtraction of an attribute vector capturing a given characteristic

– This attribute vector is computed as the average latent vector for a collection of examples

sharing that attribute (characteristic)

• Select a set of round and angular digits images

– round_numbers = [3, 6, 8, 9]

– angular_numbers = [1, 4, 7]

• Encode each one

– _, _, z_round_elements = encoder.predict(np.array(round_elements))

– _, _, z_angular_elements = encoder.predict(np.array(angular_elements))

• Compute the mean of the (z) corresponding latent variable values

– z1_mean_round_elements = mean(z1_round_elements)

– z1_mean_angular_elements = mean(z1_angular_elements)

– …

• Do attribute arithmetic

– def roundify(z):

– z_rounded = [z[0] + z1_mean_round_elements, z[1] + z2_mean_round_elements]

– return(decoder.predict(np.array([z_rounded]))[0])
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Examples

116

Roundify

Angularify
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Variational Autoencoder
Ex. of Attribute Arithmetic

117[Li et al., 2016]

Attribute
Initial Image
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Bach Choral Soprano Melodies
Z1 Step Interpolation
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Bach Choral Soprano Melodies
Z2 Step Interpolation
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Celtic Music

• Training Examples/Corpus:
• In ABC format (see later) -> Music21 -> representation
• 29 songs from the Session (https://thesession.org/)
• In the same key (D major) and the same rhythm metric (4/4)

120

https://thesession.org/
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Celtic Melodies
Z1 Step Interpolation
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Celtic Melodies
Z2 Step Interpolation
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Disentanglement (1/3)
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not smiling…
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Figure 1: Overview of our DualDis framework. On the left we illustrate the behavior of our encoder-
decoder, learned to explicitly separate complementary representations of identity (top) and attributes
(bottom) in dual latent subspaces. In the middle, we illustrate its disentangling ability by being able
to mix the identity of a first image and the attributes of a second. In the first example, the green man
takes the attributes of the yellow image, becoming a smiling woman with brown bangs. As our model
also linearizes the factors of variation, one can perform image editing (right). For the first example
(blue woman), we move the representation 6 along the directions male (first line) and glasses (second
line) to add those attributes.

by classification losses. A decoder D(hy,hz) is used to reconstruct images and generate new ones.
Our main contribution is the learning strategy that we propose to train this architecture. Using
adversarial training, we are able to explicitly separate and “orthogonalizes” the information from the
two information domains. To achieve this, each latent space is connected to a classifier of the opposite
information domain, so that this classifier finds the information that belongs to the wrong domain.
The encoder will then learn to remove this information from the latent space, making classification
impossible and thus filtering only the relevant information. Our approach is called DualDis to
highlight our two branch disentangling process. It is illustrated in Fig. 1 (middle, “disentangling”)
where it is possible to mix representations of different images. We study the disentangling capabilities
of our model on CelebA [32], Yale-B [13] and NORB [29] by comparing our model quantitatively
to state-of-the-art models by measuring both the accuracy of the models for identity and attributes
classification and their ability to disentangle the two information domains.

In addition, our architecture is also designed to linearize the factors of variation in each latent space, a
behavior that reinforces the semantic quality of the representation and is necessary for effective image
generation and editing. This is ensured through linear classifiers that both guide the linearization
process and provide us with linear directions to semantically navigate the latent spaces. Thanks to
this, we are able to modify the information represented by our latent variables that has been extracted
from any given image and perform image editing. For example on Fig. 1 (right), we change the gender
and eyeglasses attributes of images while conserving the identity and the other attributes. Thanks to
this, we perform guided data augmentation by generating variations of images with semantic changes
instead of low-level changes (flip, translation, color jitter, etc.) as usually done. We leverage this
capability to significantly improve identity classification performance on the Yale-B face dataset.

2 DualDis approach

We propose an approach called DualDis presented on Fig. 2. On the left, we show the architectural
part of our contribution, using disentangling to separate two information domains (class/identity and
attributes). Those domains have classification labels y and z that we want to predict (ŷ, ẑ), along
with a reconstruction x̂ of the input x. In the center of the figure, we describe the second part of
our approach which is the training process designed to successfully disentangle the two domains,
using adversarial classifiers and multiple loss terms. On the right, to put our model in perspective,

2

[Robert el al, 2019]

• z1 z2

• Ex: Pitch Range Duration Range

• Ex: Gender Glasses
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Disentanglement (2/3)

• Adding Term to the Reconstruction Loss [IBM Research, 2018]

• Deconstructing the β-VAE [Mathieu et al., 2019]

• Reconstruction Trade-off via Jacobian Supervision [Lezama, 2019]

Published as a conference paper at ICLR 2019

Table 1: Quantitative comparison of the disentanglement and reconstruction performance of the
unsupervised method on MNIST digits.

Model d successful class swaps reconstruction MSE
Teacher 0 94.3% 0.036
Student with Jacobian supervision 14 61.7% 0.014
Student with Jacobian supervision 18 52.1% 0.012
Student without Jacobian supervision 14 32.6% 0.011
Random weights 14 9.8% 0.116
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Figure 3: Diagram of the proposed training procedure for facial attributes disentangling. E and D
always denote the same encoder and decoder module, respectively. Images x1 and x2 are randomly
sampled and do not need to share any attribute or class. Their ground truth attribute labels are ȳ1 and
ȳ2 respectively. The latent code is split into a vector predicting the attributes y and an unspecified
part z. Shaded E indicates its weights are frozen, i.e., any loss over the indicated output does not
affect its weights.

in Section 3. In this more challenging case, the disentangling will be first learned by a teacher au-
toencoder using available annotations and an original training procedure. After a teacher is trained
to correctly disentangle and control said attributes, a student model will be trained to improve the
visual quality of the reconstruction, while maintaining the attribute manipulation ability.

4.1 MODEL ARCHITECTURE AND LOSS FUNCTION

We begin by training a teacher model for effective disentangling at the cost of low quality reconstruc-
tion. Figure 3 shows a diagram of the training architecture for the teacher model. Let x 2 RH⇥W⇥3

be an image with annotated ground truth binary attributes ȳ 2 {�1, 1}k, where k is the number of
attributes for which annotations are available. Our goal is to learn the parameters of the encoder
ET : RH⇥W⇥3 ! Rk+d and the decoder DT : Rk+d ! RH⇥W⇥3 such that ET (x) = (y, z) and
DT (y, z) = x̂ ⇡ x (Figure 3, top). Ideally, y 2 Rk should encode the specified attributes of x,
while z 2 Rd should encode the remaining information necessary for reconstruction.

The training of the teacher is divided into two steps. First, the autoencoder reconstructs the input
x, while at the same time predicting in y the ground truth labels for the attributes ȳ. Second, the
attributes part of the latent code y is swapped with that of another training sample (Figure 3, bottom).
The randomly fabricated latent code is fed into the decoder to produce a new image. Typically, this
combination of factors and nuisance variables is not represented in the training set, so evaluating
the reconstruction is not possible. Instead, we use the same encoder to assess the new image: If the
disentangling is achieved, the part of the latent code that is not related to the attributes should be
the same for the existing and fabricated images, and the predicted factors should match those of the
sample from which they were copied.

In what follows, we describe step by step the loss function used for training, which consists of the
sum of multiple loss terms. Note that, contrary to relevant recent methods (Mathieu et al., 2016;
Lample et al., 2017; Szabó et al., 2017), the proposed method does not require adversarial training.

Reconstruction loss. The first task of the autoencoder is to reconstruct the input image. The first
term of the loss is given by the L2 reconstruction loss, as in (8).
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7e adopted a simple yet effective approach of matching the moments of the two distributionsN Ma
distributions will amount to decorrelating the dimensions of the inferred priorN 7e call this modi®e
Inferred 0riorI6AEX or DI0I6AEN

A new metric for measuring disentangle
7e also proposed a new metric to evaluate the degree of disentanglementQ assuming that the
ground truth values of the attributes to disentangle are knownN 7e referred to this as a
3eparated Attribute 0redictability c3A0d scoreN 7e found this score to have good alignment
with qualitative disentanglement observed in the decoderVs output while doing latent
traversalsN 4o compute 3A0Q we ®rst constructed a dʑ� k score matrix 3 cfor d latents and k
generative factorsd whose ij  entry is the linear regression or classi®cation score cdepending
on the generative factor typed of predicting j  factor using only i  latent cFigure ?dN

For each column of the score matrix which corresponds to a generative factorQ we calculated
the difference of the top two entries ccorresponding to the top two most predictive latent
dimensionsd and then calculated the mean of these differences as the ®nal 3A0 scoreN A high
3A0 score indicates that each generative factor is primarily captured in only one latent
dimensionN 7e also observe that 3A0 score is aligned well with the disentanglement in the
generated images by the decoderN Figure @ qualitatively shows the mapping of a selected few
latents to real world concepts for CelebA face images e?fN
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6AE starts with a generative model of the data which samples latents   from a prior pc dQ followed b
p cxn d cwhere θ are the parameters of the generator or decoderdN 4he problem of inference is to co
conditioned on the observation xP

6AE achieves this by learning an approximation of a recognition modelQ parameterized by ϕQ that en
observations to the approximate posteriorsN 4he recognition model parameters are learned by opti

where the outer expectation is over the true data distribution pcxd from which we have samplesN 4h
maximizing what is referred as evidence lower bound cE,B/dP

7here 6AE falls short
For inferring disentangled factorsQ inferred prior or expected variational posteriorQ q c d � �q c │xdp
its dimensionsN 4his can be achieved by minimizing a suitable distance between the inferred prior q
generative prior pc dN 7e can also de®ne expected posterior as p c d � �p c │xdpcxddxN If we take +
distanceQ by relying on its pairwise convexityQ it can be shown that this distance is bounded by E,B
inferenceN

4his is the reason that the original 6AE has also been observed to exhibit some disentangling beha
-.I34N HoweverQ this behavior does not carry over to more complex datasetsQ unless extra supervi
providedN 4his can be due toP cid true data distribution pcxd and modeled data distribution p cxd � �p
in turn causes pc d andʑp c d to be farR and ciid the nonIconvexity of the E,B/ objectiveQ which preve
minimumN
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Disentangling Disentanglement in Variational Autoencoders

Figure 2. Reconstruction loss vs disentanglement metric of Kim and Mnih (2018). [Left] Using an anisotropic Gaussian with diagonal
covariance either learned, or fixed to principal-component values of the dataset. Point labels represent different values of �. [Right]
Using p⌫(z)=

Q
dSTUDENT-T(zd; ⌫) for different ⌫ with � = 1. Note the different x-axis scaling. Shaded areas represent ±2 standard

errors for estimated mean disentanglement calculated using 100 separately trained networks. We thus see that the variability on the
disentanglement metric is very large, presumably because of stochasticity in whether learned dimensions correspond to true generative
factors. The variability in the reconstruction was only negligible and so is not shown. See Appendix B for full experimental details.

� = 0.01 � = 0.5 � = 1.0 � = 1.2

↵
=

0
�
=

0

↵ = 1 ↵ = 3 ↵ = 5 ↵ = 8

Figure 3. Density of aggregate posterior q�(z) with different ↵, �
for spirals dataset with a mixture of Gaussian prior.

butions (see Appendix B for details).

We measure a representation’s sparsity using the Hoyer
extrinsic metric (Hurley and Rickard, 2008). For y 2 Rd,

Hoyer (y) =
p
d� kyk1/kyk2p

d� 1
2 [0, 1],

yielding 0 for a fully dense vector and 1 for a fully sparse
vector. Rather than employing this metric directly to the
mean encoding of each datapoint, we first normalise each
dimension to have a standard deviation of 1 under its aggre-
gate distribution, i.e. we use z̄d = zd/�(zd) where �(zd) is
the standard deviation of dimension d of the latent encoding
taken over the dataset. This normalisation is important as
one could achieve a “sparse” representation simply by hav-
ing different dimensions vary along different length scales
(something the �-VAE encourages through its pruning of
dimensions (Stühmer et al., 2019)), whereas we desire a rep-
resentation where different datapoints “activate” different
features. We then compute overall sparsity by averaging
over the dataset as Sparsity = 1

n

P
n

i
Hoyer (z̄i). Figure 4

(left) shows that substantial sparsity can be gained by replac-
ing a Gaussian prior (� = 0) by a sparse prior (� = 0.8).
It further shows substantial gains from the inclusion of the
aggregate posterior regularization, with ↵ = 0 giving far
low sparsity than ↵ > 0, when using our sparse prior. The
use of our sparse prior did not generally harm the recon-
struction compared. Large values of ↵ did slightly worsen
the reconstruction, but this drop-off was much slower than
increases in � (note that ↵ is increased to much higher levels
than �). Interestingly, we see that � being either too low or
too high also harmed the sparsity.

We explore the qualitative effects of sparsity in Figure 5, us-
ing a network trained with ↵ = 1000,� = 1, and � = 0.8,
corresponding to one of the models in Figure 4 (left). The
top plot shows the average encoding magnitude for data
corresponding to 3 of the 10 classes in the Fashion-MNIST
dataset. It clearly shows that the different classes (trousers,
dress, and shirt) predominantly encode information along
different sets of dimensions, as expected for sparse represen-
tations (c.f. Appendix B for plots for all classes). For each
of these classes, we explore the latent space along a partic-
ular ‘active’ dimension—one with high average encoding
magnitude—to observe if they capture meaningful features
in the image. We first identify a suitable ‘active’ dimen-
sion for a given instance (top row) from the dimension-wise
magnitudes of its encoding, by choosing one, say d, where
the magnitude far exceeds �2

0 . Given encoding value zd,
we then interpolate along this dimension (keeping all others
fixed) in the range (zd, zd + sign(zd)); the sign of zd indi-
cating the direction of interpolation. Exploring the latent
space in such a manner demonstrates a variety of consistent
feature transformations in the image, both within class (a,
b, c), and across classes (d), indicating that these sparse
dimensions do capture meaningful features in the image.



Deep Learning – Music Generation – 2019Jean-Pierre Briot

Disentanglement (3/3)

• Dual Branch Adversarial (DualDIS) [Robert el al, 2019]

• Separate Dimensions in Distinct Autoencoders (Ey and Ez)

• Measure the Presence/Absence of the Dual Dimension through a Dual 

(Adversarial) Classifier (Cz and Cy)

• Objective(s): Not Being Able to Classify Properly the Dual Dimension
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Figure 2: Architecture and learning of the DualDis framework. We use a two-branch encoder-
decoder architecture with classifiers (left). For the training, in addition to classical reconstruction and
classification losses, we use adversarial classifiers and loss terms to force the two latent spaces to
encode complementary “orthogonal” information (middle). We also indicate (right) how subsets of
components of DualDis can be used to reproduce existing baselines described in Sec. 3.

we indicate how some related works can be reproduced using the same kind of architectures with
variations in the losses used.

2.1 Dual branch Auto-Encoder

We propose an encoder-decoder architecture with a latent space split in two parts, hy and hz . Each
representation is produced by a deep encoder Ey or Ez so that the features are explicitly separated.
These representations are concatenated into h and fed to a decoder D, producing a reconstruction x̂.
Having a decoder enables image generation and ensures that the model extracts robust features [28].

While it would be possible to encode all the information in a single latent space, having two branches
encourages the model to encode two complementary kinds of information [34, 15, 30]. Taking the
example of a face dataset, we want the identity branch (Ey � E) to capture information related to
the identity y with invariance toward other factors of variation (hair style, makeup, pose, etc.); and
we want the attribute branch (Ez � E) to model this ignored information, since this branch needs
to capture factors of variation linked to visual attributes z. Having two separate deep encoders Ey

and Ez is key to an effective disentangling, and they should be designed deep enough to produce
“orthogonal” latent representations that encode very different information. Since the low-level features
represented by the first convolutional layers are likely common to both domains, we use a single
common encoder E before specializing the information in our two branches.

This auto-encoding backbone is trained using a simple mean-squared error, Lrec = ||x � x̂||22. A
visual GAN discriminator [14] or a perceptual loss [8] could improve the quality of the generations
but this was not used since it is out of the scope of our paper.

2.2 Modeling factors of variation

We want our architecture to produce robust representations of each information domain as well as
provide classification predictions. First, we can note that having a two-branch encoder was shown to
improve classification performance [37] by encouraging representations hy and hz to be invariant
toward intra-class variations. To the encoder, we add linear classifiers Wy and Wz , one for each
branch, that predict respectively ŷ and ẑ. These classifiers guide the auto-encoding backbone to
organize the information extracted for reconstruction in the right branch between our two latent
spaces hy and hz so that it allows to predict the class/identity and the attributes. To train those

3

[Robert el al, 2019]
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Implicit vs Explicit Dimensions (Disentanglement)

• Dimensions (ex: Pitch Range, Duration Range…) are 
« Chosen » by the Architecture

• But we can also Configure/Train the Architecture in order to 
« Force » some Dimensions
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Ex: EC2-VAE [Yang et al., 2019]

127



Deep Learning – Music Generation – 2019Jean-Pierre Briot

Examples EC2-VAE [Yang et al., 2019]
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4.2 Examples of Generation via Analogy

We present several representative “what if” examples by
swapping or interpolating the latent representations of dif-
ferent pieces. Throughout this section, we use the follow-
ing example (shown in Figure 4), an 8-beat melody from
the Nottingham Dataset [10] as the source, and the tar-
get rhythm or pitch will be borrowed from other pieces.
(MIDI demos are available at https://github.com/
cdyrhjohn/Deep-Music-Analogy-Demos.)

Figure 4: The source melody.

4.2.1 Analogy by replacing zp

Two examples are presented. In both cases, the latent
pitch representation and the chord condition of the source
melody are replaced with new ones from other pieces.
In other words, the model answers the analogy question:
“source’s pitch : source melody :: target’s pitch : ?”

Figure 5 shows the first example, where Figure 5(a)
shows the piece from which the pitch and chords are bor-
rowed, and Figure 5(b) shows the generated melody. From
Figure 5(a), we see the target melody is in a different key
(D major) with a larger pitch range than the source and
a big pitch jump in the beginning. From Figure 5(b), we
see the generated new melody captures such pitch features
while keeping the rhythm of the source unchanged.

(a) Target’s pitch and chord.

(b) The generated target music, using the pitch and chord from
(a) and the rhythm from the source.

Figure 5: The 1st example of analogy via replacing zp.

(a) Target’s pitch and chord.

(b) The generated target, using the pitch and chord from (a) and
the rhythm from the source.

Figure 6: The 2nd analogy example via replacing zp.

Figure 6 shows another example, whose subplots share
the same meanings with the previous one. From Figure
6(a), we see the first measure of the target’s melody is a
broken chord of Gmaj, while the second measure is the G
major scale. From Figure 6(b), we see the generated new
melody captures these pitch features. Moreover, it retains

the source’s rhythm and ignores the dotted eighth and six-
teenth notes in Figure 6(a).

4.2.2 Analogy by replacing zr

Similar to the previous section, this section shows two ex-
ample answers to the question: “source’s rhythm : source
melody :: target’s rhythm : ?” by replacing zr. Figure
7 shows the first example, where Figure 7(a) contains the
new rhythm pattern quite different from the source, and
Figure 7(b) is the generated target. We see that Figure 7(b)
perfectly inherited the new rhythm pattern and made minor
but novel modifications based on the source’s pitch.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 7: The 1st example of analogy via replacing zr.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while
keeping source’s pitch and chord.

Figure 8: The 2nd analogy example via replacing zr.

Figure 8 shows a more extreme case, in which Figure
8(a) contains only 16th notes of the same pitch. Again,
we see the generated target in Figure 8(b) maintains the
source’s pitch contour while matching the given rhythm
pattern.

4.2.3 Analogy by Replacing Chord

(a) Changing all the chords down a semitone, resulting in the
key change from G major to Bb minor.

(b) Changing the key from G major to G minor.

Figure 9: Two examples of replacing the original chord.

Though chord is not our main focus, here we show
two analogy examples in Figure 9 to answer “what if” the
source melody is composed using some other chord pro-
gressions. Figure 9(a) shows an example where the key is
Bb minor. An interesting observation is the new melody
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Though chord is not our main focus, here we show
two analogy examples in Figure 9 to answer “what if” the
source melody is composed using some other chord pro-
gressions. Figure 9(a) shows an example where the key is
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swapping or interpolating the latent representations of dif-
ferent pieces. Throughout this section, we use the follow-
ing example (shown in Figure 4), an 8-beat melody from
the Nottingham Dataset [10] as the source, and the tar-
get rhythm or pitch will be borrowed from other pieces.
(MIDI demos are available at https://github.com/
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broken chord of Gmaj, while the second measure is the G
major scale. From Figure 6(b), we see the generated new
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Examples EC2-VAE [Yang et al., 2019]
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Rythm Reference C

Rest(B) + Rythm(C)
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MusicVAE [Roberts et al., 2018]
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• Comparing Interpolation
– In the data space (melodies)

– In the latent space
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MusicVAE [Roberts et al., 2018]
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• Adding a high note density attribute vector
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BeatBlender in TensorFlow.js
MusicVAE [Roberts et al., 2018]
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https://experiments.withgoogle.com/ai/beat-blender/view/

https://experiments.withgoogle.com/ai/beat-blender/view/
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LatentLoops in TensorFlow.js
MusicVAE [Roberts et al., 2018]

133
https://teampieshop.github.io/latent-loops/

https://teampieshop.github.io/latent-loops/
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Generative Adversarial Networks
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Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃ሺீሻ
A differentiable function, 
𝐺 (here having parameters 
𝜃ሺீሻ), mapping from the 
latent space, ℝ௅, to the 
data space, ℝெ

Discriminator: 𝐷 𝑥, 𝜃ሺ𝐷ሻ
A differentiable function, 𝐷 (here 
having parameters 𝜃ሺ𝐷ሻ), 
mapping from the data space, 
ℝெ, to a scalar between 0 and 1 
representing the probability that 
the data is real
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Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]
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Figure by [Nam Hyuk Ahn, 2017]

• Training Simultaneously 2 Neural Networks
– Generator

» Transforms Random noise Vectors into Faked Samples

– Discriminator
» Estimates probability that the Sample came from training data rather than from G

– Minimax 2-player game
D(x): PD(x from real data) (Correct)
D(G(z)): PD(G(z) from real data) (Incorrect)
1 - D(G(z)): PD(G(z) from Generator) (Correct)

Prediction by D

96 5 Architecture

Fig. 5.37 Generative adversarial networks (GAN) architecture. Reproduced from [145] with the
permission of O’Reilly Media

This corresponds to a minimax two-player game, with one unique (final) solu-
tion82: G recovers the training data distribution and D outputs 1/2 everywhere. The
generator is then able to produce user-appealing synthetic samples from noise vec-
tors. The discriminator may then be discarded.

The minimax relationship is defined in Equation 5.26.

min
G

max
D

V (G,D) = Ex⇠pData [log D(x)]+Ez⇠pz(z)[log(1�D(G(z)))] (5.26)

• D(x) represents the probability that x came from the real data (i.e. the correct
estimation by D); and

• Ex⇠pData [log D(x)] is the expectation83 of log D(x) with respect to x being drawn
from the real data.

It is thus D’s objective to estimate correctly real data, that is to maximize the
Ex⇠pData [log D(x)] term.

• D(G(z)) represents the probability that G(z) came from the real data (i.e. the
uncorrect estimation by D);

• 1�D(G(z)) represents the probability that G(z) did not come from the real data,
i.e. that it was generated by G (i.e. the correct estimation by D); and

• Ez⇠pz(z)[log(1�D(G(z)))] is the expectation of log(1�D(G(z))) with respect
to G(z) being produced by G from z random noise.

82 It corresponds to the Nash equilibrium of the game. In game theory, the intuition of a Nash
equilibrium is a solution where no player can benefit by changing strategies while the other players
keep theirs unchanged, see, for example, [133].
83 The expectation has been introduced in Section 5.8.6.
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Examples of GAN Generated Images

CelebFaces Attributes Dataset (CelebA)
> 200K celebrity images

Synthetic (Generated) Celebrity images

[Karras et al., 2018]

[Brundage et al., 2018]
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MidiNet [Yang et al., 2017]

• Conditioning information
– Previous measure
– Chord sequence

• Scope:
– Previous measure (1D conditions)
– Various previous measures (2D conditions)

• Fine control:
– Conditioning on previous measure 1D/2D and on chord sequence 1D/2D for one/all 

convolutional layers
– Ex: previous measure 1D and on chord sequence 2D for all convolutional layers

» Follows more chord sequence

– Pop music dataset
138

https://soundcloud.com/vgtsv6jf5fwq/model3

https://soundcloud.com/vgtsv6jf5fwq/model3
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GAN Examples – Celtic Melodies
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GAN Examples – Bach Chorales
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Conditional LSTM-GAN [Yu, 2019]

• Melody Generation from Lyrics
• GAN Architecture
• Conditional(GAN(LSTM))

141



Deep Learning – Music Generation – 2019Jean-Pierre Briot

Conditional LSTM-GAN [Yu, 2019]
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VAE vs GAN

• VAE (Variational Autoencoder) and GAN (Generative Adversarial Networks)

Some Similarities:

• Are both generative architectures

• Generate from random latent variables

Differences:

• VAE is representational of the whole training dataset

• GAN is not

• VAE Smooth control interface for exploring latent data space

• GAN has some (ex: interpolation) but not as for VAE

• GAN produces better quality content (ex: better resolution images)

– Not a main issue for symbolic music representation

[Dykeman, 2016]
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Interpolation is impressive

https://arxiv.org/pdf/1703.10717.pdf
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Issues
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Open Issues

• Structure

– Ex: LSTM [Hochreiter & Schmidhuber, 1997]

– Clockwork RNN [Koutnik et al., 2014]

– SampleRNN [Mehri et al., 2017]

– MusicVAE [Roberts et al., 2018]

• Control

– Tonality Conformance

– Rhythm

– Ex: C-RBM [Lattner et al., 2016]

– Conditioning

– Arbitrary Constraints

• Creativity Incentive

– Vs Style Conformance

– Ex: CAN [Elgammal et al., 2017]

• Interactivity/Incrementality

– Ex: DeepBach [Hadjeres et al., 2017]

– Incremental Sampling

A Clockwork RNN

Figure 1. CW-RNN architecture is similar to a simple RNN with an input, output and hidden layer. The hidden layer is partitioned into g
modules each with its own clock rate. Within each module the neurons are fully interconnected. Neurons in faster module i are connected
to neurons in a slower module j only if a clock period Ti < Tj .

2. Related Work
Contributions to the sequence modeling and recognition
that are relevant to CW-RNN are introduced in this section.
The primary focus is on RNN extensions that deal with the
problem of bridging long time lags.

One model that is similar in spirit to our approach is the
NARX RNN1 (Lin et al., 1996). But instead of simplifying
the network, it introduces an additional sets of recurrent
connections with time lags of 2,3..k time steps. These ad-
ditional connections help to bridge long time lags, but in-
troduce many additional parameters that make NARX RNN
training more difficult and run k times slower.

Long Short-Term Memory (LSTM; Hochreiter & Schmid-
huber, 1997) uses a specialized architecture that allows in-
formation to be stored in a linear unit called a constant error

carousel (CEC) indefinitely. The cell containing the CEC
has a set of multiplicative units (gates) connected to other
cells that regulate when new information enters the CEC
(input gate), when the activation of the CEC is output to the
rest of the network (output gate), and when the activation
decays or is ”forgotten” (forget gate). These networks have
been very successful recently in speech and handwriting
recognition (Graves et al., 2005; 2009; Sak et al., 2014).

Stacking LSTMs into several layers (Fernandez et al., 2007;
Graves & Schmidhuber, 2009) aims for hierarchical se-
quence processing. Such a hierarchy, equipped with Connec-

1NARX stands for Non-linear Auto-Regressive model with
eXogeneous inputs

tionist Temporal Classification (CTC; Graves et al., 2006),
performs simultaneous segmentation and recognition of se-
quences. Its deep variant currently holds the state-of-the-
art result in phoneme recognition on the TIMIT database
(Graves et al., 2013).

Temporal Transition Hierarchy (TTH; Ring, 1993) incre-
mentally adds high-order neurons in order to build a memory
that is used to disambiguate an input at the current time step.
This approach can, in principle, bridge time intervals of any
length, but with proportionally growing network size. The
model was recently improved by adding recurrent connec-
tions (Ring, 2011) that prevent it from bloating by reusing
the high-level nodes through the recurrent connections.

One of the earliest attempts to enable RNNs to handle
long-term dependencies is the Reduced Description Net-
work (Mozer, 1992; 1994). It uses leaky neurons whose
activation changes only a bit in response to its inputs. This
technique was recently picked up by Echo State Networks
(ESN; Jaeger, 2002).

A similar technique has been used by Sutskever & Hinton
(2010) to solve some serial recall tasks. These Temporal-
Kernel RNNs add a connection from each neuron to itself
that has a weight that decays exponentially in time. This
is implemented in a way that can be computed efficiently,
however, its performance is still inferior to LSTM.

Evolino (Schmidhuber et al., 2005; 2007) feeds the input
to an RNN (which can be e.g. LSTM to cope with long
time lags) and then transforms the RNN outputs to the target
sequences via a optimal linear mapping, that is computed
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Style vs/and Control
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Style (Learnt) Control (Imposed)

[Flow Machines]
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Style vs/and Originality

147

Style (learnt) Originality

[Mimi & Eunice]
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Creative Adversarial Networks (CAN) [Elgammal et al., 2017]

148

• Extension of GAN

• Combining 2 (Contradictory) Objectives:

– How Discriminator believes that the sample comes from the training dataset (GAN)

– How Easily the Discriminator can classify the sample into established styles (classes)
» If there is strong ambiguity (i.e., various classes are equiprobable), this means that the sample is difficult to 

fit within the existing art styles

» Maybe a new style has been created…
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Creative Adversarial Networks (CAN) – Ex. of Paintings Generated
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Control

• Strategies:
– Sampling
– Conditionning (Parametrization)
– Input Manipulation
– Reinforcement
– Unit Selection

– Bottom up (Low-level adjustment)
» Ex: Sampling

– Top down (Structure imposition)
» Ex: Unit and Selection

• Entry points (Hooks)
– Input
– Hidden
– Output
– Encapsulation/Reformulation
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Markov Models
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• Operational

• May attach Constraints and Functions

– Ex: Factor Graphs, Markov Constraints [Pachet & Roy, 2011]
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in terms of execution time.
In this paper, we present a technique that, given a corpus, ensures

real time generation of verses that satisfy structural constraints. We
first describe the technique and, in Section 4, we show how it can be
used.

3 FINITE-LENGTH MARKOV PROCESSES
WITH CONSTRAINTS

A Markov process is a random process with a short-term memory: it
generates states with a probability that depends only on a fixed, finite
number of past states. The number of past states used to define the
distribution of future states defines the order of the Markov process.
A Markov process M of order n can be estimated from a corpus
using Maximum Likelihood Estimation (MLE), by computing the
relative frequencies (RF ) of each n-gram, i.e., continuous sequence
of n words that appear in the corpus. More sophisticated techniques,
such as smoothing techniques [8], can be used, to deal with the zero-
frequency problem caused by the sparsity of the RF estimate. We
decided to use MLE, because it gives an acceptable estimate of the
corpus used in this paper. However our approach is independent of
the way the process M is estimated, and is therefore compatible with
any of these techniques.

A Markov process can be used to generate new word sequences
with a random walk procedure consisting of drawing random states
according to the word transition probabilities. Each word wi is gen-
erated with probability PM (wi|wi−n, . . . , wi−1) depending only on
the n − 1 words previously generated. For instance, the order-1
Markov model of the following corpus:

• Clay loves Mary
• Mary loves Clay
• Clay loves Mary today
• Mary loves Paul today

is represented in Figure 1. A random walk could produce sequences
such as “loves Mary loves Clay loves”, or “Paul today”.
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Figure 1. An order-1 Markov process learned from a corpus composed of
five words.

Markov processes do not provide any control on the structure of
the generated sequences. For instance, a constraint that imposes the
last word of a 4-word sequence to be “today” and a constraint that
imposes to the first word to rhyme with “today” create a long distance
dependency between the first and the last word of the sequence. In-
deed the only four-word sequences that satisfy these constraints are
“Clay loves Mary today” and “Clay loves Paul today”. Therefore, the
first word of the sequence must be “Clay”, excluding “Mary”, “Paul”,
“loves” and “today” as possible first states. This implicit dependency
cannot be represented in the initial Markov model. Obviously, the

model generates texts that do not necessarily rhyme. Generate-and-
test can be used to filter out incorrect sequences, but without any
guarantee that correct sequences will be generated.

The framework of Constrained Markov Processes allows precisely
to solve this issue, i.e., to generate Markov sequences that satisfy ex-
plicit control constraints, such as the rhyme constraint in the previous
example.

Following [14], the Markov process is reformulated as a constraint
satisfaction problem P . The sequence to generate is represented as
the sequence of finite-domain constrained variables of P . The tran-
sition probabilities are represented as Markov constraints holding on
these variables. Control constraints are represented as arbitrary con-
straints. The same authors showed, in [15], that if the control con-
straints are unary (i.e., they hold on a single variable) , the initial
Markov process M can be transformed in a constrained Markov pro-
cess M̃ with the following properties:

1. M̃ generates exactly the verses that satisfy the control constraints
and,

2. the admissible verses are generated with the same probabilities in
M and M̃ up to a constant factor.

M̃ is obtained in two steps. The first step makes the constraint sat-
isfaction problem P arc-consistent [10]: for each variable, the values
that violate at least one constraint are removed, until a fixed-point is
reached. An intermediary Markov process is built from M and P by
zeroing state transitions that are filtered out by the arc-consistency
procedure, i.e., the transitions that correspond to the removed val-
ues. This step guarantees that only correct sequences are generated
(Property 1. above). The first step affects the transition probabilities,
therefore, a second step is applied that adjusts the local transition
probabilities to get the initial global probability distribution of M
(Property 2.). M̃ is the resulting process. For more details about the
construction of M̃ and the proof that the obtained model satisfies 1.
and 2., see [15].

Coming back to the previous example, the Markov process Mex is
transformed in the process M̃ex in Figure 2.

Figure 2. A constrained Markov process M̃ex that generates verses
composed of 4 words and rhymes with the word yesterday. M̃ex and Mex

have the same probability distribution. M1, M2 and M3 represent the
Markov constraints, C1 represents the control constraint “rhyme with

today”, C4 represents the control constraint “be today”. The arrow labels
indicate the transition probabilities.
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X3f1 f2 f4

f3

X2X1

Fig. 1. The factor graph for the function p(X1, X2, X3) = f1(X1, X2) · f2(X2, X3) ·
f3(X1, X3) · f4(X3).

4 Belief Propagation for Markov and Regular

We apply those techniques to the problem of sampling constrained Markov
sequences, and describe belief propagation in the case where we impose sequences
to be recognised by an automaton A, i.e. to belong to the language L(A) of words
recognised by A. This is equivalent to sampling the target distribution ptarget
defined as:

ptarget (X1, . . . , Xn) ∝






P (X2|X1) · · · P (Xn|Xn−1) ·
P1(X1) · · · Pn(Xn)

if X1 · · · Xn ∈ L(A)

0 otherwise

We use the symbol ∝ to indicate that the equality holds after normalisation,
so that ptarget defines a probability function. P (X2|X1) · · · P (Xn|Xn−1) gives
the typical order 1 Markov probability of the sequences X1, . . . , Xn, provided
it is accepted by the automaton. Additionally, we add unary constraints Pi, i.e.
factors biasing each variable Xi individually. Implicitly, there is a big factor
holding on the full sequence X1, . . . , Xn taking value 1 when X1 · · · Xn ∈ L(A),
and value 0 otherwise, corresponding to a hard global constraint. Consequently,
the factor graph of ptarget is not a tree.

We propose a reformulation of ptarget (X1, . . . , Xn) into a new function preg of
Y1, . . . , Yn, where the new Yi variables take values (a, q) ∈ X ×Q, where a ∈ X is
a state of the Markov chain, and q ∈ Q is a state of the automaton. Recall that
transitions of the automaton are also labelled with elements of X . This function
preg is composed of simple binary factors, and its factor graph, which is tree
structured, is shown on Figure 2.

g1

Y1 Y2 YnYn−1 fn−1f1

gn−1g2 gn

Fig. 2. The factor graph of the distribution on Markov sequences accepted by an
automaton A, defined by preg(Y1, . . . , Yn)
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[Roy and Pachet, 2017]
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Markov Model vs Deep Learning

+ Markov models are conceptually simple

+ Markov models have a simple implementation and a simple learning algorithm as the model is a transition probability
table

-- Neural network models are conceptually simple but the optimized implementations of current deep network architecture 
may be complex and need a lot of tuning

-- Order 1 Markov models (that is, considering only the previous state) do not capture long-term temporal structures

-- Order n Markov models (considering n previous states) are possible but require an explosive training set size and can
lead to plagiarism

+ Neural networks can capture various types of relations, contexts and regularities

+ Deep networks can learn long-term and high-order dependencies

+ Markov models can learn from a few examples

-- Neural networks need a lot of examples in order to be able to learn well

-- Markov models do not generalize very well

+ Neural networks generalize better through the use of distributed representations

+ Markov models are operational models (automata) on which some control on the generation could be attached

-- Deep networks are generative models with a distributed representation and therefore with no direct control to be attached

Markov models simpler

Deep learning more conformant
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Configuration and Control Issues

• Corpus (Curation): Training Examples -> Style

• Architecture(s)
– Single or Compound
– Conditioning (Parameterization)
– Configuration (Hyperparameters)

– Loss Function
» From Prediction or Reconstruction Error to Incorporating more and 

more Constraints
– External Loss/Control, ex: Adversarial/GAN

• Strategy(ies)
– Data/Input Manipulation, Ex: Latent Variables

• Improbable Settings – Imagination Limits?
• Interactivity
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Autonomous Generation vs Creation Support

155
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Autonomous vs Assisted Music Creation

156

• Autonomous Generation/Interpretation
– Turing Test
– Symbolic or/and Audio Music Generation
– Parametrization/User Preferences (Style, Mood, etc.)
– For Commercials and Documentaries
– Create Royalty-free or Copyright-buyable Music
– Ex: 

• Assistance to Human Composers and Musicians
– Propose
– Refine
– Analyze
– Harmonize
– Produce
– Ex: FlowComposer [Pachet et al., 2014]
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Autonomous Music Making

• Symbolic or/and Audio Music Generation

• For Commercials and Documentaries
• Create Royalty-free or Copyright-buyable Music
• Based on Deep learning + Samples + Sound processing techniques

+ Business model
-- Musical model
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Bach Chorales Turing Test

• Autonomous Artificial Musicians

• Music Composition Turing test
– Imitation Game Scenario [Turing, 1950]
– Designed by A. Turing to explore the question "Can Machines think?"

A. M. Turing (1950) Computing Machinery and Intelligence. Mind 49: 433-460.  
 

COMPUTING MACHINERY AND INTELLIGENCE 
 

By A. M. Turing 

1. The Imitation Game 

I propose to consider the question, "Can machines think?" This should begin with 
definitions of the meaning of the terms "machine" and "think." The definitions might be 
framed so as to reflect so far as possible the normal use of the words, but this attitude is 
dangerous, If the meaning of the words "machine" and "think" are to be found by 
examining how they are commonly used it is difficult to escape the conclusion that the 
meaning and the answer to the question, "Can machines think?" is to be sought in a 
statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a 
definition I shall replace the question by another, which is closely related to it and is 
expressed in relatively unambiguous words. 

The new form of the problem can be described in terms of a game which we call the 
'imitation game." It is played with three people, a man (A), a woman (B), and an 
interrogator (C) who may be of either sex. The interrogator stays in a room apart front the 
other two. The object of the game for the interrogator is to determine which of the other 
two is the man and which is the woman. He knows them by labels X and Y, and at the 
end of the game he says either "X is A and Y is B" or "X is B and Y is A." The 
interrogator is allowed to put questions to A and B thus: 

C: Will X please tell me the length of his or her hair? 

Now suppose X is actually A, then A must answer. It is A's object in the game to try and 
cause C to make the wrong identification. His answer might therefore be: 

"My hair is shingled, and the longest strands are about nine inches long." 

In order that tones of voice may not help the interrogator the answers should be written, 
or better still, typewritten. The ideal arrangement is to have a teleprinter communicating 
between the two rooms. Alternatively the question and answers can be repeated by an 
intermediary. The object of the game for the third player (B) is to help the interrogator. 
The best strategy for her is probably to give truthful answers. She can add such things as 
"I am the woman, don't listen to him!" to her answers, but it will avail nothing as the man 
can make similar remarks.  

We now ask the question, "What will happen when a machine takes the part of A in this 
game?" Will the interrogator decide wrongly as often when the game is played like this as 
he does when the game is played between a man and a woman? These questions replace 
our original, "Can machines think?"  

(A) J. S. Bach (B) DeepBach [Hadjeres et al., 2017]

(C) Listener

?
– To evaluate artificial composers techniques
– To explore music cognition
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Bach Chorales Turing Test
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• February 2017, Dutch TV Channel
• Bach vs DeepBach Turing Test
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Objective and Evaluation [Pachet, 2019]
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Current Systems

Autonomous
Generalization-based

Future Systems

Augmentation/Assistance
Creative-incentived

Objective Create music Create music not possible 
otherwise

Evaluation Please the listener Please the composer

Risk Conventional Surprising
But meaningful
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Co-Creativity

• Co-Creation by Human(s)+Machine(s)
– Ex: FlowComposer [Pachet et al., 2014]

– Continuator [Pachet, 2002]

– Omax/DYCI2 [Assayag et al., 2003]
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FlowComposer [Pachet et al., 2014] – Demo (B. Carré)
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Hello World
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• January 2018, Hello World, Flow Records
• Making Off

https://www.youtube.com/watch?v=yxTF-UFvoHU

https://www.youtube.com/watch?v=yxTF-UFvoHU
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Deep Learning
Co-Creation/Assistance & Interactivity

164

• YDCHT/MusicVAE [Roberts et al., 2018]
– Non interactive Generation
– Loops
– Collage

• DeepBach [Hadjeres et al., 2017]
– (Incremental Sampling)
– Interactive/Selective Regeneration

• MeasureVAE+LatentRNN+MeasureVAE [Pati et al., 2019]
– Inpainting
– Previous Measure + Next measure
– -> Latent Embeddings -> Missing Embedding
– -> Missing Measure
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Interactivity
DeepBach [Hadjeres et al., 2017]
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https://www.youtube.com/watch?time_continue=28&v=OkkKjy3WRNo

https://www.youtube.com/watch?time_continue=28&v=OkkKjy3WRNo
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Interactive Creation Environment

• A Deep Learning-Based Flow Composer Analog ?

• Slower Learning than for Markov Models

– But GPUs, etc.

– And Corpus Pre-Training

• No (or not yet)  Exact Control Method (Markov Constraints)

• Various Architectures/Strategies

• Inspiration, RNN-based

• Complementation, Feedforward-based

• Control, VAE-based

• Inpairing, (V)AE+RNN-based
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Conclusion/Prospects

167

• Deep Learning-based Music Generation
• Successes and Limits/Prospects

• Objective Loss Function Hypothesis
• Conformance Pros and Cons
• Control
• Structure
• Explication

• Markov Models (and other Models) still Interesting
• Symbolic AI (GOFAI) still Necessary
• Automated Generation vs Human-Machine Co-Creation
• New Usages
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Thank You – Questions
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